
Lecture #22: Application — Analysis of Algorithms

What Will Happen During the Lecture

The goal of this presentation is to help students to be familiar with the applications of discrete

probability theory to the analysis (and, sometimes, design) of algorithms.

Problems To Be Solved

The lecture presentation included a randomized algorithm to check whether an input inte-

ger key was stored in an input integer array A — as given in Figure 1 on page 2. This algorithm

calls a variant of a “Linear Search” algorithm as a subroutine — as shown in Figure 2 on

page 2.

During the lecture, material from the preparatory reading will be used to analyze the running

time of this randomized algorithm.

The preparatory reading also included an analysis of another randomized algorithm ending

with a complicated — and not very helpful — expression. If time permits, this expression will

be simplified (and the techniques that were used to do this will be highlighted).

1



boolean rSearch3 (integer[] A, integer key) {

1. integer n := A.length

2. integer i := 0

3. while (i < n) {

4. Choose j uniformly from the set {0, 1, 2, . . . , n− 1} — independently from any

previous selections.

5. if (A[j] == key) {

6. return true

}

7. i := i+ 1

}

8. return dSearch(A, key)

}

Figure 1: Randomized Algorithm for Searching in an Integer Array

integer dSearch (integer[] A, integer key) {

1. integer n := A.length

2. integer i := 0

3. while (i < n) {

4. if (A[i] == key) {

5. return true

}

6. i := i+ 1

}

7. return false

}

Figure 2: Subroutine Implementing Linear Search

2


