
Lecture #22: Application — Analysis of Algorithms

Lecture Presentation

Review of Preparatory Material

1



Analyzing a Randomized Algorithm

The lecture presentation included a randomized algorithm to check whether an input inte-

ger key was stored in an input integer array A — as given in Figure 2 on the next page. This

algorithm calls a variant of a “Linear Search” algorithm as a subroutine — as shown in Figure 1

on the next page, as well.

The goal for this initial problem is to analyze the running time of this randomized algorithm

when its input includes an integer array A with length n.

Number of Steps Used by the Deterministic Subroutine:



integer dSearch (integer[] A, integer key) {

1. integer n := A.length

2. integer i := 0

3. while (i < n) {

4. if (A[i] == key) {

5. return true

}

6. i := i+ 1

}

7. return false

}

Figure 1: Subroutine Implementing Linear Search

boolean rSearch3 (integer[] A, integer key) {

1. integer n := A.length

2. integer i := 0

3. while (i < n) {

4. Choose j uniformly from the set {0, 1, 2, . . . , n− 1} — independently from any

previous selections.

5. if (A[j] == key) {

6. return true

}

7. i := i+ 1

}

8. return dSearch(A, key)

}

Figure 2: Randomized Algorithm for Searching in an Integer Array





Successful Search:

Let k be an integer such that 1 ≤ k ≤ n and suppose that exactly k copies of the input key are

stored in the array A. Suppose, as well, that the first copy of the key is stored at index ℓ — so

that ℓ is an integer such that 0 ≤ ℓ ≤ n− k.

Defining the Sample Space





Defining the Probability Distribution

Defining the Random Variable







Completing the Analysis for This Input

Unsuccessful Search:

Suppose, instead, that there are no copies of the key in the input array, at all.



What about the Sample Space, etc.?

Worst-Case Expected Running Time:



1 Dealing with a Complicated Expression

This kind of analysis can result in complicated expressions, whose value we wish to give in

“closed form”. If we cannot give a simplified version of the expression’s value then we might

be able to work with a simplified form of an approximation, upper bound or lower bound for

this expression, instead.

One such expression was found in the preparatory reading — where the expected value of a

random variable was found to be

E[T ] =
n−1
∑

i=0

(

1− k

n

)i
· k

n
· (4i+ 6) +

(

1− k

n

)n
· (4n + 3).

It is doubtful that this kind of expression will have a simple solution — but it is possible to ap-

proximate its value.

An Easy Case: What is this when k = 0?

Another Easy Case: What is this when k = n?



Now suppose, instead, that k is an integer such that 1 ≤ k ≤ n− 1.

Making a Start:







Now, what can we do with the expression
(

1− k

n

)n
?




