Lecture #21: Tail Bounds Key Concepts

Basic Bounds

Theorem (Basic Inequality). Let Ω be a **finite** sample space with probability distribution $P: \Omega \to \mathbb{R}$, let $X: \Omega \to \mathbb{R}$ be a random variable, and let $h: \mathbb{R} \to \mathbb{R}$ be a total function such that

$$h(x) > 0$$
 for all $x \in \mathbb{R}$.

Then, for every real number a such that a > 0,

$$\mathsf{P}(h(X) \ge a) \le \frac{\mathsf{E}[h(X)]}{a}.$$

Corollary (Markov's Inequality). Let Ω be a **finite** sample space with probability distribution $P: \Omega \to \mathbb{R}$, and let $X: \Omega \to \mathbb{R}$ be a random variable. Then, for every **positive** real number a,

$$\mathsf{P}(|X| \ge a) \le \frac{\mathsf{E}[|X|]}{a}.$$

Variance and Standard Deviation

Definition. Let Ω be a sample space with probability distribution $P:\Omega\to\mathbb{R}$, and let $X:\Omega\to\mathbb{R}$. Then the *variance* of X, with respect to P, is

$$\mathrm{var}(X) = \sum_{\mu \in \Omega} \left(X(\mu) - \mathsf{E}[X] \right)^2 \times \mathsf{P}(\mu)$$

and the **standard deviation** of X, denoted $\sigma(X)$, is $\sqrt{\operatorname{var}(X)}$.

Theorem. Let Ω be a **finite** sample space, let $P:\Omega\to\mathbb{R}$ be a probability distribution for Ω , and let X be a random variable. Then X^2 is also a random variable, and

$$\operatorname{var}(X) = \operatorname{E}[X^2] - \operatorname{E}[X]^2.$$

It is *not* generally true that var(X + Y) = var(X) + var(Y) for a pair of random variables X and Y — so the following result is useful (and not trivial):

Theorem. Let Ω be a **finite** sample space with probability distribution $P:\Omega\to\mathbb{R}$ and let $X_1,X_2,\ldots,X_n:\Omega\to\mathbb{R}$ be random variables (for some positive integer n). If X_1,X_2,\ldots,X_n are **pairwise independent** then

$$var(X_1 + X_2 + \cdots + X_n) = var(X_1) + var(X_2) + \cdots + var(X_n).$$

More Bounds

Theorem (Chebyshev's Inequality). Let Ω be a **finite** sample space with probability distribution $P: \Omega \to \mathbb{R}$, let X be a random variable, and let $a \in \mathbb{R}$ such that a > 0. Then

$$\mathsf{P}(|X| \ge a) \le \frac{\mathsf{E}[X^2]}{a^2}.$$

Theorem. Let Σ be a **finite** sample space with probability distribution $P: \Omega \to \mathbb{R}$, let $X: \Omega \to \mathbb{R}$ be a random variable, and let $a \in \mathbb{R}$ such that a > 0. Then

$$\mathsf{P}(X - \mathsf{E}[X] \ge a) \le \frac{\mathsf{var}(X)}{a^2 + \mathsf{var}(X)}.$$

Cantelli's Inequality is sometimes called the "One-Sided Chebyshev's Inequality".

Theorem (Chernoff Bound). Let Ω be a finite sample space with probability distribution $P:\Omega\to\mathbb{R}$. Suppose that X_1,X_2,\ldots,X_n are mutually independent random variables such that $X_i:\Omega\to\{0,1\}$ for $1\le i\le n$, and suppose that $P(X_i=1)=p$ for every integer i such that $1\le i\le n$, for a real number p such that $0\le p\le 1$. Let $X=X_1+X_2+\cdots+X_n$. Then, for every real number θ such that $0\le \theta\le 1$,

$$P(X \ge (1+\theta)pn) \le e^{-\frac{\theta^2}{3}pn}.$$