Lecture #20: Random Variables and Expectation Key Concepts

Some — but not all — of this material is review material.

Random Variables

Definition 1. Let Ω be a sample space. A *random variable over* Ω is a (total) function $X:\Omega\to\mathbb{R}$.

We will often be interested in random variable whose ranges are particular *subsets* V of $\mathbb R$ — so that these functions can also be viewed as functions $X:\Omega\to V$ (as well as functions $X:\Omega\to\mathbb R$).

Definition 2. An *indicator random variable* over a sample space Ω , is a random variable X such that $X(\sigma) \in \{0,1\}$ for all $\sigma \in \Omega$.

Once again, let Ω be a sample space and let $X: \Omega \to \mathbb{R}$.

• We will write "X = r" as the name of the event

$$\{\sigma \in \Omega \mid X(\sigma) = r\} \subseteq \Omega.$$

• We will write " $X \ge r$ " as the name of the event

$$\{\sigma \in \Omega \mid X(\sigma) \geq r\} \subseteq \Omega.$$

• " $X \le r$ ", "X > r", X < r", and $X \ne r$ " can be used as the names for (corresponding) events in the same way.

The Expected Value of a Random Variable

Definition 3. Let Ω be a sample space with probability distribution $P : \Omega \to \mathbb{R}$, and let $X : \Omega \to \mathbb{R}$ be a random variable over Ω .

Suppose that

$$\sum_{\sigma \in \Omega} \mathsf{P}(\sigma) \times |X(\sigma)|$$

is finite — that is, "less than $+\infty$ ".

Then the expected value of X, with respect to probability distribution P, is the value

$$\mathsf{E}[X] = \sum_{\sigma \in \Omega} \mathsf{P}(\sigma) \times X(\sigma).$$

Recall, from the lecture on "Conditional Probability", that if Ω is a sample space, $P:\Omega\to\mathbb{R}$ is a probability distribution, and $B\subseteq\Omega$ is an event such that $\mathsf{P}(B)>0$, then a **conditional probability distribution** $P_B:\Omega\to\mathbb{R}$ can be defined by setting

$$\mathsf{P}_B(\sigma) = \begin{cases} \frac{\mathsf{P}(\sigma)}{\mathsf{P}(B)} & \text{if } \sigma \in B, \\ 0 & \text{if } \sigma \notin B \end{cases}$$

for every outcome $\sigma \in \Omega$.

Definition 4. If X is a random variable then the *conditional expectation of* X *given* B is the expected value of X with the respect to the conditional probability P_B :

$$\mathsf{E}[X \,|\, B] = \sum_{\sigma \in \Omega} \mathsf{P}_B(\sigma) \times X(\sigma).$$

Linearity of Expectation

Let Ω be a sample space with a probability distribution $\mathsf{P}:\Omega\to\mathbb{R}$, and let $X_1,X_2,\ldots,X_n:\Omega\to\mathbb{R}$ be random variables, for some positive integer n. " $X_1+X_2+\cdots+X_n$ " denotes a random variable such that

$$(X_1 + X_2 + \dots + X_n)(\sigma) = X_1(\sigma) + X_2(\sigma) + \dots + X_n(\sigma)$$

for each outcome $\sigma \in \Omega$. Similarly, if $X:\Omega \to \mathbb{R}$ and $a,b \in \mathbb{R}$ then " $a\cdot X+b$ " denotes a random variable such that

$$(aX + b)(\sigma) = a \cdot X(\sigma) + b$$

for every outcome $\sigma \in \Omega$, as well.

¹This is a "technical restriction" that you will not need to worry about whenever Ω is a finite set.

Claim 1 (Linearity of Expectation). Let Ω be a sample space with probability distribution $P: \Omega \to \mathbb{R}$.

(a) If $X_1, X_2, \dots, X_n : \Omega \to \mathbb{R}$ are random variables over Ω , for a positive integer n, then

$$\mathsf{E}[X_1 + X_2 + \dots + X_n] = \mathsf{E}[X_1] + \mathsf{E}[X_2] + \dots + \mathsf{E}[X_n].$$

(b) If $X:\Omega\to\mathbb{R}$ is a random variable over Ω and $a,b\in\mathbb{R}$ then

$$\mathsf{E}[a \cdot X + b] = a \cdot \mathsf{E}[X] + b.$$

Independent Random Variables

Once again, suppose that Ω is a sample space with probability distribution $P:\Omega\to\mathbb{R}$. Consider random variables $X:\Omega\to V_X$ and $Y:\Omega\to V_Y$, where $V_X,V_Y\subseteq\mathbb{R}$. Recall that, for $a\in V_X$ and $b\in V_Y$,

"
$$X = a$$
" = $\{ \sigma \in \Omega \mid X(\sigma) = a \}$

and

"
$$Y = b$$
" = $\{ \tau \in \Omega \mid Y(\tau) = b \}$,

so that

"
$$X = a \land Y = b$$
" = $\{ \mu \in \Omega \mid X(\mu) = a \text{ and } Y(\mu) = b \}.$

Definition 5. The above random variables X and Y are *independent* if

$$P(X = a \land Y = b) = P(X = a) \times P(Y = b)$$

for all values $a \in V_X$ and $b \in V_Y$.

Claim 2. Let Ω be a sample space with probability distribution $P:\Omega\to\mathbb{R}$, and let $X,Y:\Omega\to\mathbb{R}$. If X and Y are independent random variables then

$$\mathsf{E}[X \times Y] = \mathsf{E}[X] \times \mathsf{E}[Y].$$

Pairwise Independent Random Variables

Once again, let Ω be a sample space with probability distribution $P:\Omega\to\mathbb{R}$. Let k be a positive integer and let

$$X_1: \Omega \to V_1, X_2: \Omega \to V_2, \dots, X_k: \Omega \to V_k$$

be random variables over Ω (so that $V_1, V_2, \dots, V_k \subseteq \mathbb{R}$).

Definition 6. The random variables X_1, X_2, \dots, X_k are **pairwise independent** if X_i and X_j are independent, for every pair of numbers i and j such that $1 \le i < j \le k$.

Mutually Independent Random Variables

Finally, let Ω be a sample space with probability distribution $P:\Omega\to\mathbb{R}$. Let k be a positive integer and let

$$X_1: \Omega \to V_1, X_2: \Omega \to V_2, \ldots, X_k: \Omega \to V_k$$

be random variables over Ω (so that $V_1,V_2,\ldots,V_k\subseteq\mathbb{R}$).

Definition 7. The random variables X_1, X_2, \ldots, X_k are **mutually independent** if the following condition is satisfied: **For every** subset $S \subseteq \{1, 2, \ldots, k\}$ and **for all** combinations of $a_i \in V_i$, for $i \in S$,

$$\mathsf{P}\left(\bigwedge_{i\in S}(X_i=a_i)\right)=\prod_{i\in S}\mathsf{P}(X_i=a_i).$$