Lecture #20: Random Variables and Expectation Lecture Presentation

Review of Preparatory Material

A Problem You Might Find in a Textbook

Suppose you roll a die (whose surfaces show the numbers $1,\,2,\,3,\,4,\,5$ and 6) over and over again — but this, time you always roll the die exactly ten times. You are interested in the "expected" number of times that you roll a number that is the same as the number you rolled immediately before this.

Sample Space:	Sam	ple	Sp	ace:
---------------	-----	-----	----	------

The Function You are Interested In:

Let us suppose — that is, assume — that this is a fair die. That is, you roll each number between 1 and 6 with the same probability, and the number that you see (each time) does not depend on any of the numbers you rolled before.

Corresponding Probability Distribution:

Notice that there nine ways for you to "roll the same number as you did immediately before this":

- The *second* number that you roll might be the same as the *first*.
- The third number that you roll might be the same as the second.
- The fourth number that you might be the same as the third.

...and so on.

Taking Advantage of This:

Using a Result from the Preparatory Reading to Finish:

A Problem Involving Hash Tables with Chaining

Once again, consider a *hash table with chaining*. As before, suppose that the hash table stores a set

$$S = \{k_1, k_2, \dots, k_n\}$$

of n values from some "universe" \mathcal{U} " — where n is a positive integer. Suppose, as well, that the table size is m, so that the hash table is constructed, and accessed, using some **hash** function

$$h: \mathcal{U} \to \{0, 1, 2, \dots, m-1\}.$$

For $0 \le i \le m-1$, let S_i be the set of integers j such that $h(k_j) = i$:

$$S_i = \{j \in \mathbb{Z} \mid 1 \le j \le n \text{ and } h(k_j) = i\}.$$

Suppose that we now model the problem using the same kind of **sample space** as in recent lectures, and that we make the same **assumptions** about hash functions, as well.

What This Means:

Let us now consider the "expected" number of integers j such that the $j^{\rm th}$ key, k_j , is "hashed" to location 0 :
How is This Value Represented?
Calculating This Value:

Something Worth Noting:

Proving a Result from the Required Reading

Consider the following *exercise* from the preparatory reading:

Exercise: Prove that if Ω is a sample space with probability distribution $P:\Omega\to\mathbb{R},$ $B\subseteq\Omega$ is an event such that P(B)>0, and X is a random variable, then

$$\mathsf{E}[X \,|\, B] = \frac{1}{\mathsf{P}(B)} \times \sum_{\sigma \in B} (\mathsf{P}(\sigma) \times X(\sigma)).$$

What Do You Need To Do, To Get Started?

Proving the Claim: