Lecture #18: Probability Distributions Key Concepts

Almost everything here should a part of a **review** of material from a prerequisite course — which might have presented the material somewhat differently.

Experiments and Sample Spaces

An **experiment** is a procedure (or process) that yields one of a given set of possible **out-comes**. The set of possible outcomes of the experiment — which we will often name Ω — is called the **sample space**. In this course we will (almost always) consider experiments where the sample space, Ω , is countable — studying a part of probability theory called **discrete probability theory**.

Events

An *event* is a subset of the experiment's sample space Ω . Events are used to model the kinds of "things that are interested in" that will be studied.

An *elementary event* is a set of size one — that is, it is an event that only includes a single outcome. (Some references might use the name "outcome" for these too.)

Probability Distributions

Consider an experiment with sample space Ω . A *probability distribution* is a (total) function $P:\Omega\to\mathbb{R}$ such that $0\leq P(x)\leq 1$ for every outcome $x\in\Omega$, and such that

$$\sum_{x \in \Omega} \mathsf{P}(x) = 1.$$

For any set Ω , let $\mathcal{P}(\Omega)$ denote the set of all *subsets* of Ω . A probability distribution P (on an experiment with a countable sample space) is "extended" to get a function

$$\mathsf{P}:\mathcal{P}(\Omega)\to\mathbb{R}$$

by setting

$$\mathsf{P}(A) = \sum_{x \in A} \mathsf{P}(x)$$

for every event $A \subseteq \Omega$ (that is, for all $A \in \mathcal{P}(\Omega)$).

Uniform Distributions

If Ω is a finite set then the *uniform probability distribution* (for Ω) defines the probability of every outcome to be the same: This is the function $P:\Omega\to\mathbb{R}$ such that

$$\mathsf{P}(x) = \frac{1}{|\Omega|}$$

for every outcome $x \in \Omega$.

Suppose that $A\subseteq\Omega$ is an event. Then, if P is the uniform distribution for Ω , then

$$\begin{split} \mathsf{P}(A) &= \sum_{x \in A} \mathsf{P}(x) \\ &= \sum_{x \in A} \frac{1}{|\Omega|} \\ &= \frac{1}{|\Omega|} \sum_{x \in A} 1 \\ &= \frac{1}{|\Omega|} \cdot |A| \\ &= \frac{|A|}{|\Omega|}. \end{split}$$

Probability of the Complement of an Event

If Ω is a sample space for an experiment and $A \subseteq \Omega$ is an event, then the **complement**¹ of the event A, \overline{A} , is the set of outcomes that *are not* in A.

$$\overline{A} = \{ x \in \Omega \mid x \notin A \}.$$

Theorem 1. Let Ω be a sample space with probability distribution $P: \Omega \to \mathbb{R}$, and let $A \subseteq \Omega$. Then the probability of the complement, \overline{A} , of the event A is

$$\mathsf{P}(\overline{A}) = 1 - \mathsf{P}(A).$$

Probability of the Union of Events

Theorem 2. Let Ω be a sample space with probability distribution $P: \Omega \to \mathbb{R}$. Then, for any events $A, B \subseteq \Omega$,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Corollary 3. Let Ω be a sample space with probability distribution $P: \Omega \to \mathbb{R}$. Then, for any events $A, B \subseteq \Omega$,

$$P(A \cup B) \le P(A) + P(B)$$
.

Theorem 4 (Union Bound). Let Ω be a sample space with probability distribution $P: \Omega \to \mathbb{R}$, let k be a positive integer, and let $E_1, E_2, \dots, E_k \subseteq \Omega$. Then

$$P(E_1 \cup E_2 \cup \cdots \cup E_k) \leq \sum_{i=1}^k P(E_i).$$

 $^{^{1}}$ It is also OK if you use A^{C} to represent the complement of A, as we did for *languages*. These are both commonly used as the name for this set.