CPSC 351 — Tutorial Exercise #15 Hint for the Problem in This Exercise

1. Consider the following decision problem.

The Rejection Problem

Instance: A Turing machine

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$$

and an input string $\omega \in \Sigma^*$ for M.

Question: Does M reject M?

Let us use the same alphabet Σ_{TM} and encoding for Turing machines and input strings as in Lecture #13, so that the language decidable language $\mathsf{TM+I} \subseteq \Sigma_{\mathsf{TM}}^{\star}$, introduced in that lectures, is the *language of instances* of this decision problem. Let Reject_{\mathsf{TM}} \subseteq \mathsf{TM+I} be the *language of Yes-instances* of this decision problem.

You were asked to prove that the Rejection Problem is undecidable — that is, prove that the above language, $Reject_{TM}$, is undecidable.

Hint: Let $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{\rm accept},q_{\rm reject})$ be a Turing machine. How could you make a *very simple* change, in order to produce another Turing machine

$$\widehat{M} = (Q, \Sigma, \Gamma, \widehat{\delta}, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$$

such that M rejects ω if and only if \widehat{M} accepts ω , for every string $\omega \in \Sigma^*$?

Some of the changes that have been used, in other examples, are approximately as simple as the change that is needed here. Others are *more complicated* than the change that is needed here.