CPSC 351 — Tutorial Exercise #15 Many-One Reductions II

These questions are intended to give you practice in establishing *many-one reductions* between languages. They are of the difficulty, and length, that would be appropriate for a question on an *assignment* in CPSC 351.

Problem To Be Solved

1. Consider the following decision problem.

The Rejection Problem

Instance: A Turing machine

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$$

and an input string $\omega \in \Sigma^*$ for M.

Question: Does M reject M?

Let us use the same alphabet Σ_{TM} and encoding for Turing machines and input strings as in Lecture #13, so that the language decidable language $L_{\mathsf{TM+l}} \subseteq \Sigma_{\mathsf{TM}}^{\star}$, introduced in that lectures, is the *language of instances* of this decision problem. Let Reject_{\mathsf{TM}} \subseteq L_{\mathsf{TM+l}} be the *language of Yes-instances* of this decision problem.

Prove that the Rejection Problem is undecidable — that is, prove that the above language, $Reject_{TM}$, is undecidable.

A *hint* for this problem is available in a separate file — but you should spend at least a little bit of time trying to solve this problem, without looking at it, before you use this hint.