Lecture #17: Proofs of Undecidability — Examples II Lecture Presentation

Review of Preparatory Material

The Problem To Be Solved

In the preparatory material, a language "All_{TM}" was proved to be undecidable. This was the language of Yes-instances of the following decision problem:

The "Everything Accepted" Problem

Instance: A Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}).$

Question: Does M accept every input string? That is, is $L(M) = \Sigma^*$?

So one could also say that the "Everything Accepted" Problem was proved to be undecidable. Consider the following the following decision problem:

The "Same Language" Problem

Instance: A pair of Turing machines, M_1 and M_2 , with the same input alphabet. *Question:* Does M_1 and M_2 have the same language? This is, is $L(M_1) = L(M_2)$?

The goal of this lecture is to prove that the "Same Language" Problem is undecidable.

Encodings and Languages

Let $\Sigma_{\mathsf{2TM}} = \Sigma_{\mathsf{TM}} \cup \{\#\}.$

- A pair of Turing machines M_1 and M_2 can be encoded as a string $\alpha \# \beta \in \Sigma_{2\mathsf{TM}}^\star$ where $\alpha \in \mathsf{TM} \subseteq \Sigma_{\mathsf{TM}}^\star$ is the encoding for M_1 and $\beta \in \mathsf{TM} \subseteq \Sigma_{\mathsf{TM}}^\star$ is the encoding for M_2 .
- Let $\mathsf{Pair}_\mathsf{TM} \subseteq \Sigma_{\mathsf{2TM}}^\star$ be the language of encodings of pairs of Turing machines

$$M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, q_{0.1}, q_{A.1}, q_{B.1})$$

and

$$M_2 = (Q_2, \Sigma, \Gamma_2, \delta_2, q_{0.2}, q_{A.2}, q_{B.2})$$

with the same input alphabet Σ .

Now let

$$\mathsf{E}_{\mathsf{TM}} \subseteq \mathsf{Pair}_{\mathsf{TM}} \subseteq \Sigma_{\mathsf{2TM}}^{\star}$$

be the language including encodings of pairs of Turing machines M_1 and M_2 , with the same input alphabet Σ , such that $L(M_1) = L(M_2)$.

Then $Pair_{TM}$ is the *language of instances* and E_{TM} is the *language of Yes-instances* of the "Same Language" Problem that is defined above. Thus we must prove that the language E_{TM} , is undecidable to show that the "Same Language" Problem is undecidable.

A Mapping That Can Be Used

Proof That This Mapping Would Work

Adding Detail: Considering the Language $Pair_{TM}$ in More Detail

Adding Detail: What Would the Encoding of the "Useful Turing Machine" Look Like?

Two Claims, and Their Proofs

Proving That f is Computable
One More Claim To State and Prove
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function

Additional Information To Provide

Finishing Things