Lecture #16: Proofs of Undecidability — Examples I Lecture Presentation

Review of Preparatory Material

The Problem To Be Solved

The previous lecture considered two decision problems:

Acceptance Problem

Instance: A Turing machine

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$$

and an input string $\omega \in \Sigma^{\star}$

Question: Does M accept ω ?

and

Halting Problem

Instance: A Turing machine

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$$

and an input string $\omega \in \Sigma^{\star}$

Question: Does M halt, when executed on input ω ?

with languages of Yes-instances A_{TM} and $Halt_{\text{TM}}$, respectively. The goal, for this lecture presentation, is to show that the "Acceptance Problem" is reducible to the "Halting Problem" problem", that is,

$$A_{\mathsf{TM}} \preceq_{\mathsf{M}} \mathsf{Halt}_{\mathsf{TM}}.$$

What Kind of Mapping Should We Start With?

A Mapping That Can Be Used

Proof That This Mapping Would Work

Adding Detail: Considering Encodings

Two Claims, and Their Proofs

Proving That f is Computable
One More Claim To State and Prove
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function
A (Somewhat) "High-Level Algorithm" To Compute This Function

Additional Information To Provide

Finishing Things