
Lecture #15: Many-One Reductions

Supplement for Preparatory Viewing

First Example of a Many-One Reduction

Let L, L̂ ⊆ Σ⋆ for an alphabet Σ, such that L 6= Σ⋆, and suppose that L̂ is decidable. Since

L 6= Σ⋆ there exists a string µNo ∈ Σ⋆ such that µNo /∈ L.

Let f : Σ⋆ → Σ⋆ such that, for all ω ∈ Σ⋆,

f(ω) =

{
ω if ω ∈ L̂,

µNo if ω /∈ L̂.

During the lecture it is proved that f is a many-one reduction from L ∩ L̂ to L.

Second Example of a Many-One Reduction

Consider the following decision problems:

Acceptance Problem

Instance: A Turing machine

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

and an input string ω ∈ Σ⋆

Question: Does M accept ω?

1



Halting Problem

Instance: A Turing machine

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

and an input string ω ∈ Σ⋆

Question: Does M halt, when executed on input ω?

In order to prove that the Halting Problem is reducible to the Acceptance Problem, a mapping ϕ,

from instances of the Halting Problem to instances of the Acceptance Problem was introduced.

Let

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

be a Turing machine and let ω ∈ Σ⋆ — so that ω can be thought of as an “input string”

for M , and the pair (M,ω) is an instance of the “Halting Problem”. The mapping, ϕ, maps this

instance to the instance (M̂ , ω̂), where

M̂ = (Q,Σ,Γ, δ̂, q0, qaccept, qreject)

— where, for every state q ∈ Q \ {qaccept, qreject} and for every symbol σ ∈ Γ,

δ̂(q, σ) =

{
δ(q, σ) if δ(q, σ) = (r, τ,m) where r 6= qreject,

(qaccept, τ,m) if δ(q, σ) = (qreject, τ,m)

where r ∈ Q, τ ∈ Γ, and m ∈ {L, R} — and where ω̂ = ω.

During the lecture presentation, a sketch of a proof is given that for every Turing machine M
and input string ω for M , if (M̂ , ω̂) = ϕ((M,ω)) (as described above), then

M halts, when executed on ω ⇐⇒ M̂ accepts ω̂.

The alphabet ΣTM and encoding scheme from instances of the Acceptance Problem to strings

in Σ⋆

TM, from Lecture #13, can now be applied. Three languages can now be defined from the

Acceptance Problem:

• The language of instances of the Acceptance Problem is the language, LTM+I ⊆ Σ⋆

TM,

that was proved to decidable in Lecture #13.

• The language of Yes-instances of the Acceptance Problem is the language, ATM ⊆
LTM+I, that was proved to be recognizable, but also undecidable, in Lecture #13.

• The language of No-instances of the Acceptance Problem is the language, NATM ⊆
LTM+I, that was proved to be undecidable in Lecture #14.

2



The same encoding scheme can be applied to instances of the Halting Problem.

• The language of instances of the Halting Problem is the language LTM+I ⊆ Σ⋆

TM — the

same of the language of instances of the Acceptance Problem. As noted above, this was

shown to be decidable in Lecture #13.

• The language of Yes-instances of the Halting problem is the language HaltTM ⊆ LTM+I

of encodings of Turing machines M , and input strings ω for M , such that M halts when

executed on input ω.

• The language of No-instances of the Halting problem is the language LoopTM ⊆ LTM+I

of encodings of Turing machines M , and input strings ω for M , such that M does not

halt when executed on input ω, that is, such that M loops on ω.

As noted in the lecture presentation, when we say that we wish to show that “the Halting

Problem is reducible to the Acceptance Problem”, we mean that we wish to show that

HaltTM �M ATM.

When proving this, used the fact that the language, LTM+I, of instances of the Halting Problem,

is decidable. We also used a string µJunk ∈ Σ⋆

TM that does not encode an instance of the

Acceptance Problem, that is, such that µJunk /∈ LTM+I. For this example, the string µJunk was

chosen to be the empty string, λ.

3


