Lecture #15: Many-One Reductions Key Concepts

Many-One Reductions

Let Σ_1 and Σ_2 be two alphabets (possibly the same) and let $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$ be two languages over these alphabets.

Definition 1. A *many-one reduction* from L_1 to L_2 is a *total* function

$$f: \Sigma_1^{\star} \to \Sigma_2^{\star}$$

such that the following properties are satisfied.

- (a) For every string $\omega \in \Sigma_1^{\star}$, $\omega \in L_1$ if and only if $f(\omega) \in L_2$.
- (b) The function f is computable.

To prove that a language $L_1 \subseteq \Sigma_1^*$ is many-one reducible to a language $L_2 \subseteq \Sigma_2^*$,

- 1. Clearly and precisely describe the *total* function $f: \Sigma_1^{\star} \to \Sigma_2^{\star}$ that will be shown to be a "many-one reduction."
- 2. **Prove** that if $\omega \in L_1$ then $f(\omega) \in L_2$ for every string $\omega \in \Sigma^*$.
- 3. **Prove** that if $\omega \notin L_1$ then $f(\omega) \notin L_2$ for every string $\omega \in \Sigma^*$.
- 4. **Sketch a Proof** that f is computable including enough detail for it to be reasonably clear that you really *could* write a Python or Java program that computes this function from strings to strings.

Decision Problems

Definition 2. A *decision problem* is a computational problem that asks a question — so that it has a "Yes/No" answer.

When an *alphabet* Σ and an *encoding* — mapping instances of the problem to strings in Σ^* — is chosen, *three* languages can be associated with the decision problem:

- Language of Instances: The set of strings in Σ^* that are encodings of instances of the decision problem.
- Language of Yes-Instances: The set of strings in Σ^* that are encodings of instances of the decision problem for which the answer is "Yes".
- Language of No-Instances: The set of strings in Σ^* that are encodings of instances of the decision problem for which the answer is "No".

The Usual Situation:

- Every instance of the decision problem is encoded by some string in Σ^* , and no string in Σ^* is an encoding for two or more instances of the decision problem.
- We are, generally, interested in decision problems whose languages of instances are decidable.
- When we say that we are "reducing one decision problem to another" in this course
 — we generally mean that we are giving a many-one reduction from the language of
 Yes-instances for the first decision problem to the language of Yes-instances of
 the second decision problem.

Suggested Process for Reductions with Decision Problems — for the "Usual Situation":

The main new idea: When you can, start by working at the high level (working with decision problems instead of languages of instances); get things right at that level; and then add detail, as needed to prove a corresponding reduction from one *language* to another.

- 1. Start by describing a mapping, φ , from instances of the first problem to instances of the second problem (which can be turned into the function, from strings to strings, that we will eventually need).
- 2. Show that the mapping φ maps each Yes-instance of the first problem to a Yes-instance of the second problem, and that φ maps each No-instance of the first problem to a No-instances of the second problem.

- 3. Now consider encoding schemes: One, e_1 , maps instances of the first problem to strings over an alphabet Σ_1 , and another, e_2 , maps instances of the second problem to strings over an alphabet Σ_2 .
 - These will generally be given for you, if you are completing a reduction to solve a problem on an assignment.
- 4. Let $L_{I_1} \subseteq \Sigma_1^*$ be the language of encodings of instances of the first problem, and let $L_{I_2} \subseteq \Sigma_2^*$ be the language of encodings of instances of the second problem.
- 5. Confirm the *Usual Situation:* Prove (often, by stating a previously established result) that L_{I_1} is decidable, and confirm that $L_{I_2} \neq \Sigma_2^{\star}$ so that there exists a string $\mu_{\text{Junk}} \in \Sigma_2^{\star}$ such that $\mu_{\text{Junk}} \notin L_{I_2}$. *Say, clearly, what string* μ_{Junk} *you are going to use.*
- 6. Let $f: \Sigma_1^{\star} \to \Sigma_2^{\star}$ be defined as follows for every string $\mu \in \Sigma_1^{\star}$.
 - If $\mu \in L_{I_1}$ so that μ is the encoding of some instances, α , of the first problem, then $f(\mu)$ is the encoding of the correspondence instance $f(\alpha)$ of the second problem where φ is the mapping from instances of the first problem to instances of the second problem, chosen at the beginning of this process.
 - If $\mu \notin L_{I_2}$ then $f(\mu) = \mu_{\mathsf{Junk}}$ for the string $\mu_{\mathsf{Junk}} \in \Sigma_2^{\star}$ chosen during the step before this one.

Note: If you have completed all the above steps then $f: \Sigma_1^{\star} \to \Sigma_2^{\star}$ such that $\omega \in L_1$ if and only if $f(\omega) \in L_2$, for every string $\omega \in \Sigma_1^{\star}$.

- 7. Give an algorithm to compute the function f and prove that it is correct.
 - It is often advisable to start at the high level, using the mapping φ and, and the encoding schemes for problems, to give an algorithm to compute f that can be described using pseudocode.
 - Details can be added, as needed, to confirm that there is a multi-tape Turing that computes the function f, as well.

Properties

Closure Properties and Their Applications

Claim 1. Suppose that $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$ (for alphabets Σ_1 and Σ_2) are languages such that $L_1 \preceq_M L_2$. If L_2 is decidable then L_1 is decidable too.

Claim 2. Suppose that $L_1 \subseteq \Sigma_1^{\star}$ and $L_2 \subseteq \Sigma_2^{\star}$ (for alphabets Σ_1 and Σ_2) are languages such that $L_1 \preceq_M L_2$. If L_2 is recognizable then L_1 is recognizable too.

The following are corollaries of the above claims.

Claim 3. Suppose that $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$ (for alphabets Σ_1 and Σ_2) are languages such that $L_1 \preceq_M L_2$. If L_1 is undecidable then L_2 is undecidable too.

Claim 4. Suppose that $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$ (for alphabets Σ_1 and Σ_2) are languages such that $L_1 \preceq_M L_2$. If L_1 is unrecognizable then L_2 is unrecognizable too.

Another process to prove that a language $L \subseteq \Sigma^*$ is undecidable:

- Choose another language $\widehat{L} \subseteq \widehat{\Sigma}^{\star}$ (over some alphabet $\widehat{\Sigma}$) such that \widehat{L} is undecidable.
- Prove that $\widehat{L} \leq_{\mathsf{M}} L$.
- Conclude, by Corollary #3, above, that L must be undecidable too.

A process to prove that a language $L \subseteq \Sigma^*$ is unrecognizable:

- Choose another language $\widehat{L}\subseteq\widehat{\Sigma}^{\star}$ (over some alphabet $\widehat{\Sigma}$) such that \widehat{L} is unrecognizable.
- Prove that $\widehat{L} \prec_{\mathsf{M}} L$.
- ullet Conclude, by Corollary #4, above, that L must be unrecognizable too.

Relationships Between Reducibilities

Claim 5. The set of many-one reductions forms a reducibility.

Claim 6. Let $L_1 \subseteq \Sigma_1^*$ and let $L_2 \subseteq \Sigma_2^*$. If $L_1 \preceq_M L_2$ then $L_1 \preceq_O L_2$.

Claim 7. There exist languages $L_1 \subseteq \Sigma_1^{\star}$ and $L_2 \subseteq \Sigma_2^{\star}$ (for alphabets Σ_1 and Σ_2) such that $L_1 \preceq_{\mathcal{O}} L_2$ but $L_1 \not\preceq_{\mathcal{M}} L_2$.