
Lecture #15: Many-One Reductions

Key Concepts

Many-One Reductions

Let Σ1 and Σ2 be two alphabets (possibly the same) and let L1 ⊆ Σ⋆

1
and L2 ⊆ Σ⋆

2
be two

languages over these alphabets.

Definition 1. A many-one reduction from L1 to L2 is a total function

f : Σ⋆

1
→ Σ⋆

2

such that the following properties are satisfied.

(a) For every string ω ∈ Σ⋆

1
, ω ∈ L1 if and only if f(ω) ∈ L2.

(b) The function f is computable.

To prove that a language L1 ⊆ Σ⋆

1
is many-one reducible to a language L2 ⊆ Σ⋆

2
,

1. Clearly and precisely describe the total function f : Σ⋆

1
→ Σ⋆

2
that will be shown to be a

“many-one reduction.”

2. Prove that if ω ∈ L1 then f(ω) ∈ L2 for every string ω ∈ Σ⋆.

3. Prove that if ω /∈ L1 then f(ω) /∈ L2 for every string ω ∈ Σ⋆.

4. Sketch a Proof that f is computable — including enough detail for it to be reasonably

clear that you really could write a Python or Java program that computes this function

from strings to strings.

1



Decision Problems

Definition 2. A decision problem is a computational problem that asks a question — so that

it has a “Yes/No” answer.

When an alphabet Σ and an encoding — mapping instances of the problem to strings in Σ⋆ —

is chosen, three languages can be associated with the decision problem:

• Language of Instances: The set of strings in Σ⋆ that are encodings of instances of the

decision problem.

• Language of Yes-Instances: The set of strings in Σ⋆ that are encodings of instances of

the decision problem for which the answer is “Yes”.

• Language of No-Instances: The set of strings in Σ⋆ that are encodings of instances of

the decision problem for which the answer is “No”.

The Usual Situation:

• Every instance of the decision problem is encoded by some string in Σ⋆, and no string

in Σ⋆ is an encoding for two or more instances of the decision problem.

• We are, generally, interested in decision problems whose languages of instances are

decidable.

• When we say that we are “reducing one decision problem to another” — in this course

— we generally mean that we are giving a many-one reduction from the language of

Yes-instances for the first decision problem to the language of Yes-instances of

the second decision problem.

Suggested Process for Reductions with Decision Problems — for the “Usual Situation”:

The main new idea: When you can, start by working at the high level (working with decision

problems instead of languages of instances); get things right at that level; and then add detail,

as needed to prove a corresponding reduction from one language to another.

1. Start by describing a mapping, ϕ, from instances of the first problem to instances of the

second problem (which can be turned into the function, from strings to strings, that we

will eventually need).

2. Show that the mapping ϕ maps each Yes-instance of the first problem to a Yes-instance

of the second problem, and that ϕ maps each No-instance of the first problem to a No-

instances of the second problem.

2



3. Now consider encoding schemes: One, e1, maps instances of the first problem to strings

over an alphabet Σ1, and another, e2, maps instances of the second problem to strings

over an alphabet Σ2.

These will generally be given for you, if you are completing a reduction to solve a problem

on an assignment.

4. Let LI1
⊆ Σ⋆

1
be the language of encodings of instances of the first problem, and let

LI2
⊆ Σ⋆

2
be the language of encodings of instances of the second problem.

5. Confirm the Usual Situation: Prove (often, by stating a previously established result)

that LI1
is decidable, and confirm that LI2

6= Σ⋆

2
— so that there exists a string µJunk ∈ Σ⋆

2

such that µJunk /∈ LI2
. Say, clearly, what string µJunk you are going to use.

6. Let f : Σ⋆

1
→ Σ⋆

2
be defined as follows for every string µ ∈ Σ⋆

1
.

• If µ ∈ LI1
— so that µ is the encoding of some instances, α, of the first problem,

then f(µ) is the encoding of the correspondence instance f(α) of the second prob-

lem — where ϕ is the mapping from instances of the first problem to instances of

the second problem, chosen at the beginning of this process.

• If µ /∈ LI2
then f(µ) = µJunk — for the string µJunk ∈ Σ⋆

2
chosen during the step

before this one.

Note: If you have completed all the above steps then f : Σ⋆

1
→ Σ⋆

2
such that ω ∈ L1 if

and only if f(ω) ∈ L2, for every string ω ∈ Σ⋆

1
.

7. Give an algorithm to compute the function f and prove that it is correct.

• It is often advisable to start at the high level, using the mapping ϕ and, and the

encoding schemes for problems, to give an algorithm to compute f that can be

described using pseudocode.

• Details can be added, as needed, to confirm that there is a multi-tape Turing that

computes the function f , as well.

Properties

Closure Properties and Their Applications

Claim 1. Suppose that L1 ⊆ Σ⋆

1
and L2 ⊆ Σ⋆

2
(for alphabets Σ1 and Σ2) are languages such

that L1 �M L2. If L2 is decidable then L1 is decidable too.

Claim 2. Suppose that L1 ⊆ Σ⋆

1
and L2 ⊆ Σ⋆

2
(for alphabets Σ1 and Σ2) are languages such

that L1 �M L2. If L2 is recognizable then L1 is recognizable too.

3



The following are corollaries of the above claims.

Claim 3. Suppose that L1 ⊆ Σ⋆

1
and L2 ⊆ Σ⋆

2
(for alphabets Σ1 and Σ2) are languages such

that L1 �M L2. If L1 is undecidable then L2 is undecidable too.

Claim 4. Suppose that L1 ⊆ Σ⋆

1
and L2 ⊆ Σ⋆

2
(for alphabets Σ1 and Σ2) are languages such

that L1 �M L2. If L1 is unrecognizable then L2 is unrecognizable too.

Another process to prove that a language L ⊆ Σ
⋆ is undecidable:

• Choose another language L̂ ⊆ Σ̂⋆ (over some alphabet Σ̂) such that L̂ is undecidable.

• Prove that L̂ �M L.

• Conclude, by Corollary #3, above, that L must be undecidable too.

A process to prove that a language L ⊆ Σ
⋆ is unrecognizable:

• Choose another language L̂ ⊆ Σ̂⋆ (over some alphabet Σ̂) such that L̂ is unrecognizable.

• Prove that L̂ �M L.

• Conclude, by Corollary #4, above, that L must be unrecognizable too.

Relationships Between Reducibilities

Claim 5. The set of many-one reductions forms a reducibility.

Claim 6. Let L1 ⊆ Σ⋆

1
and let L2 ⊆ Σ⋆

2
. If L1 �M L2 then L1 �O L2.

Claim 7. There exist languages L1 ⊆ Σ⋆

1
and L2 ⊆ Σ⋆

2
(for alphabets Σ1 and Σ2) such that

L1 �O L2 but L1 6�M L2.

4


