Lecture #15: Many-One Reductions
Key Concepts

Many-One Reductions

Let 31 and ¥, be two alphabets (possibly the same) and let L; C X7 and Ly C X3 be two
languages over these alphabets.

Definition 1. A many-one reduction from L to L, is a total function
f:37—= %3
such that the following properties are satisfied.

(@) Forevery stringw € ¥}, w € Ly ifand only if f(w) € Lo.

(b) The function f is computable.

To prove that a language L; C X7 is many-one reducible to a language Ly C 333,
1. Clearly and precisely describe the total function f : ¥7 — X3 that will be shown to be a
“many-one reduction.”
2. Prove thatif w € L then f(w) € Lo for every string w € ¥*.
3. Prove thatif w ¢ L, then f(w) ¢ Lo for every string w € X*.

4. Sketch a Proof that f is computable — including enough detail for it to be reasonably
clear that you really could write a Python or Java program that computes this function
from strings to strings.



Decision Problems

Definition 2. A decision problem is a computational problem that asks a question — so that
it has a “Yes/No” answer.

When an alphabet ¥ and an encoding — mapping instances of the problem to strings in ¥* —
is chosen, three languages can be associated with the decision problem:

» Language of Instances: The set of strings in X* that are encodings of instances of the
decision problem.

» Language of Yes-Instances: The set of strings in X* that are encodings of instances of
the decision problem for which the answer is “Yes”.

» Language of No-Instances: The set of strings in ¥* that are encodings of instances of
the decision problem for which the answer is “No”.

The Usual Situation:

 Every instance of the decision problem is encoded by some string in ¥*, and no string
in X2* is an encoding for two or more instances of the decision problem.

» We are, generally, interested in decision problems whose languages of instances are
decidable.

» When we say that we are “reducing one decision problem to another” — in this course
— we generally mean that we are giving a many-one reduction from the language of
Yes-instances for the first decision problem to the language of Yes-instances of
the second decision problem.

Suggested Process for Reductions with Decision Problems — for the “Usual Situation”:

The main new idea: When you can, start by working at the high level (working with decision
problems instead of languages of instances); get things right at that level; and then add detail,
as needed to prove a corresponding reduction from one language to another.

1. Start by describing a mapping, ¢, from instances of the first problem to instances of the
second problem (which can be turned into the function, from strings to strings, that we
will eventually need).

2. Show that the mapping ¢ maps each Yes-instance of the first problem to a Yes-instance
of the second problem, and that ¢ maps each No-instance of the first problem to a No-
instances of the second problem.



3. Now consider encoding schemes: One, e;, maps instances of the first problem to strings
over an alphabet X1, and another, e, maps instances of the second problem to strings
over an alphabet X5.

These will generally be given for you, if you are completing a reduction to solve a problem
on an assignment.

4. Let Ly, € X7 be the language of encodings of instances of the first problem, and let
L, C X% be the language of encodings of instances of the second problem.

5. Confirm the Usual Situation: Prove (often, by stating a previously established result)
that L, is decidable, and confirm that L, # ¥3 — so that there exists a string pyunk € 3
such that pyunk ¢ Ly,. Say, clearly, what string p1yunk you are going to use.

6. Let f : X7 — 33 be defined as follows for every string 11 € 7.

* If p € Ly, — so that p is the encoding of some instances, «, of the first problem,
then f(u) is the encoding of the correspondence instance f(«) of the second prob-
lem — where ¢ is the mapping from instances of the first problem to instances of
the second problem, chosen at the beginning of this process.

« If u ¢ Ly, then f(p) = pyunk — for the string pyunk € X3 chosen during the step
before this one.

Note: If you have completed all the above steps then f : ¥7 — 33 such thatw € L; if
and only if f(w) € Lo, for every string w € 7.

7. Give an algorithm to compute the function f and prove that it is correct.

+ It is often advisable to start at the high level, using the mapping ¢ and, and the
encoding schemes for problems, to give an algorithm to compute f that can be
described using pseudocode.

» Details can be added, as needed, to confirm that there is a multi-tape Turing that
computes the function f, as well.

Properties

Closure Properties and Their Applications

Claim 1. Suppose that L1 C X7 and Ly C X3 (for alphabets ¥, and ¥9) are languages such
that L1 <y Lo. If Ly is decidable then L, is decidable too.

Claim 2. Suppose that L1 C X7 and Ly C Y35 (for alphabets ¥, and ¥9) are languages such
that L1 <y Ls. If Lo is recognizable then L1 is recognizable too.



The following are corollaries of the above claims.

Claim 3. Suppose that L1 C X7 and Ly C Y35 (for alphabets ¥, and ¥9) are languages such
that L1 <y L+. If Ly is undecidable then L4 is undecidable too.

Claim 4. Suppose that L1 C ¥} and Ly C X5 (for alphabets ¥, and ¥2) are languages such
that L1 <y Lo. If L1 is unrecognizable then L is unrecognizable too.
Another process to prove that a language L. C X* is undecidable:

» Choose another language LCS* (over some alphabet i) such that Z is undecidable.
. Prove that L, <m L.

» Conclude, by Corollary #3, above, that L must be undecidable too.

A process to prove that a language L C X* is unrecognizable:

» Choose another language L - S (over some alphabet 2“:) such that L is unrecognizable.
« Prove that L <y L.

« Conclude, by Corollary #4, above, that L must be unrecognizable too.

Relationships Between Reducibilities

Claim 5. The set of many-one reductions forms a reducibility.
Claim 6. Let I, C EI and let Ly C Eg IfL1 =<m Lo then 14 <o Lo.

Claim 7. There exist languages L, C X7 and Ly C 33 (for alphabets ¥, and ¥3) such that
Ly <o Ly but L1 Am Lo.



