Lecture #14: Oracle Reductions Key Concepts

Reducibilities

Definition 1. A *reducibility* is any binary relation $\leq_{\mathbb{Q}}$ between languages (possibly over different alphabets) such that the following properties are satisfied.

- (a) $L \leq_{\mathbb{Q}} L$ for every language $L \subseteq \Sigma^*$ (and for every alphabet Σ).
- (b) For all languages $L_1\subseteq \Sigma_1^\star$, $L_2\subseteq \Sigma_2^\star$ and $L_3\subseteq \Sigma_3^\star$ (and alphabets Σ_1 , Σ_2 and Σ_3) if $L_1\preceq_{\mathbf{Q}} L_2$ and $L_2\preceq_{\mathbf{Q}} L_3$ then $L_1\preceq_{\mathbf{Q}} L_3$.

Oracle Reductions

Definitions

Definition 2. An *oracle for a language* $L \subseteq \Sigma_L^*$ is a device that is capable of reporting whether any string $\omega \in \Sigma_L^*$ is a member of L.

Definition 3. Let $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$. Then L_1 is *oracle reducible* to L_2 ,

$$L_1 \preceq_{\mathsf{O}} L_2$$
,

if there exists an algorithm that decides membership in L_1 that uses an oracle (that is, a subroutine) deciding membership in L_2 .

Describing an Oracle Reduction Between Languages

To describe an oracle reduction from a language $L_1 \subseteq \Sigma_1^*$ to a language $L_2 \subseteq \Sigma_2^*$:

1. Give pseudocode for an algorithm that decides membership in L_1 using a separate **Boolean method** that decides membership in L_1 You do not need to write a method deciding L_2 — just assume that one exists.

- 2. If this is not obvious, *prove the correctness* of the algorithm that decides membership in L_1 , assuming the correctness of an (unknown) algorithm that decides membership in L_2 and that is used whenever it is needed.
- 3. Adding more detail (only) as needed, show that if there exists a multi-tape Turing machine M_2 that decided membership in L_2 then this can be used as a component in a multi-tape Turing machine M_1 that would decide membership in L_1 .

Useful Properties

The set of oracle reductions forms a *reducibility* — as this is defined above.

Let $L_1 \subseteq \Sigma_1^{\star}$ and let $L_2 \subseteq \Sigma_2^{\star}$, for alphabets Σ_1 and Σ_2 . If

- $L_1 \leq_{\mathsf{O}} L_2$, and
- L_2 is decidable,

then L_1 is decidable as well. That is, the set of decidable languages is *closed* under oracle reductions.

Note: It follows that if

- $L_1 \leq_{\mathsf{O}} L_2$, and
- L_1 is undecidable,

then L_2 is **undecidable**.

However, the set of recognizable language is **not** closed under oracle languages: There exist languages $L_1 \subseteq \Sigma_1^{\star}$ and $L_2 \subseteq \Sigma_2^{\star}$ such that

- $L_1 \leq_{\mathsf{O}} L_2$,
- L_2 is recognizable, but
- *L*₁ is unrecognizable.

Thus oracle reductions *cannot* be used to prove that languages are unrecognizable.

Another Undecidable Language

Let $\textit{NA}_{\mathsf{TM}} \subseteq \Sigma^{\star}_{\mathsf{TM}}$ be the set of encodings of Turing machines M, and input strings ω for M, such that M **does not** accept μ . It was proved (in the preparatory material for this lecture), using an oracle reduction, that the language $\textit{NA}_{\mathsf{TM}}$ is undecidable.