Lecture #14: Oracle Reductions Lecture Presentation

Review of Preparatory Material

A First Problem — Suitable for a Test

Let $\Sigma = \{ {\tt a}, {\tt b}, {\tt c} \},$ let $L \subseteq \Sigma^{\star},$ and let

$$L_a = \{\omega \in \Sigma^\star \mid \omega \in L \text{ and } \omega \text{ ends with "a"}\}.$$

You were asked to prove that $L_a \preceq_{\mathsf{O}} L$.

What Do You Need To Provide?

```
On input \omega \in \{a,b,c\}^*:

1. if (\omega ends with "a") {
2. if (\omega \in L) {
3. accept \omega
 } else {
4. reject \omega
 }
} else {
5. reject \omega
 }
```

Details of Reduction

Consider the algorithm shown in Figure 1,

Establishing Correctness

Implementation Details

Why is This "Suitable as a Test Problem"?

A Second Problem — Suitable for an Assignment

Consider the language LOOP_{TM} $\subseteq \Sigma_{\mathsf{TM}}^{\star}$, including encodings of Turing machines M and input strings ω for M such that M **loops** on ω .

You were asked to establish an oracle reduction, involving LOOP $_{TM}$ and some other language, that can be used to prove that the language LOOP $_{TM}$ is undecidable.

What We Need To Provide:

Useful Information That We Already Have:

At this point in the course several similar languages have been considered:

- The language TM+I $\subseteq \Sigma_{\mathsf{TM}}^{\star}$ of encodings of Turing machines M and input strings ω for M. This language is **decidable** and it follows from the definitions of these languages that $\mathsf{LOOP_{\mathsf{TM}}} \subseteq \mathsf{TM+I} \subseteq \Sigma_{\mathsf{TM}}$.
- The language $A_{TM} \subseteq \Sigma_{TM}^{\star}$ of encodings of Turing machines M and input strings ω for M such that M accepts ω .

This language is *recognizable*: A multi-tape Turing machine with language A_{TM} (called a "universal Turing machine") was described in Lecture #13 — and it follows, by results about multi-tape Turing machines included in Lecture #12, that there must also exist a standard (single tape) Turing machine, $M_{A_{TM}}$, whose language is A_{TM} , as well.

On the other hand it was proved in Lecture #13, that the language A_{TM} is *undecidable*.

Which Oracle Reduction Will We Present, To Solve This Problem?

Details of Reduction: An Algorithm To Consider

Details of Reduction: Implementation Details

Why is This More Appropriate for an Assignment?