Lecture #13: Universal Turing Machines What Will Happen During the Lecture

Goals of this lecture presentation will be to help students understand *universal Turing machines* and why they are important.

The preparatory material introduced an alphabet, Σ_{TM} , which were used to define **encodings** of **Turing machines** — as strings in Σ_{TM}^{\star} — along with four languages:

- $L_{\text{TM}} \subseteq \Sigma_{\text{TM}}^{\star}$ the language of encodings of Turing machines. It was noted, in the preparatory material for the lecture, that the language L_{TM} is **decidable**.
- $L_{\mathsf{TM+l}} \subseteq \Sigma_{\mathsf{TM}}^{\star}$ the language of encodings of encodings of Turing machines M and input strings ω for M. It was noted, in the preparatory material for the lecture, that the language $L_{\mathsf{TM+l}}$ is also **decidable**.
- $A_{\mathsf{TM}} \subseteq L_{\mathsf{TM+I}}$ the language of encodings of Turing machines M, and input strings ω for M, such that M accepts ω . Since A_{TM} is the language of the "universal Turing machine", introduced in the preparatory material, A_{TM} is **recognizable**. However, a proof was sketched, in the preparatory material, that A_{TM} is **undecidable**.
- $A_{\mathsf{TM}}^C = \{ \mu \in \Sigma_{\mathsf{TM}}^\star \mid \mu \notin A_{\mathsf{TM}} \} \subseteq \Sigma_{\mathsf{TM}}^\star$ the *complement* of the language A_{TM} . A proof was sketched, in the preparatory material, that A_{TM}^C is *unrecognizable*.

During the lecture presentation, the proofs that " A_{TM} is undecidable" and that " A_{TM}^{C} is unrecognizable" will be explored, in a bit more detail — and students will have the opportunity to ask questions about these results.