
CPSC 351 — Tutorial Exercise #12

Additional Practice Problems

These problems will not be discussed during the tutorial, and solutions for these problems will

not be made available. They can be used as “practice” problems that can help you practice

skills considered in the lecture presentation for Lecture #12, or in Tutorial Exercise #12.

Practice Problems

Completing a Turing Machine for Binary Addition

Recall that the initial questions in Tutorial #12 concerned a component of a 3-tape Turing

machine — which can be used as part of a Turing machine for binary addition — that could

(sometimes) be used to complete the computation when the empty string was to be returned.

This component included states r0, r1, r2, r3, r4, and r5, along with the Turing machine’s

halting state, qreject.

Let us consider, now, another component of a “binary addition” Turing machine, that is as

shown in Figure 1 on page 2 — where δ(q0,⊔,⊔,⊔) = (qhalt, (⊔,S), (⊔,S), (⊔,S)). In order

to keep the diagram simple, transitions, to the component that was considered in the tutorial

exercises are not shown — and these are as follows:

• δ(q0,#,⊔,⊔) = (r0, (#̇,R), (⊔,S), (⊔,S)).

• For all σ ∈ {0,1,⊔}, δ(s1, σ,⊔,⊔) = (r0, (σ,S), (⊔,S), (⊔,S)).

• δ(s2,⊔,⊔,⊔) = (r0, (⊔,S), (⊔,S), (⊔,S)).

• For σ ∈ {#,⊔}, δ(s3, σ,⊔,⊔) = (r0, (σ,S), (⊔,S), (⊔,S)).

• For all σ ∈ {0,1,#}, δ(s4, σ,⊔) = (r0, (σ,S), (⊔,S), (⊔,S)).

• δ(s5,#,⊔,⊔) = (r0, (#,R), (⊔,S), (⊔,S)).

Some of these transitions might be followed ω either has at least two copies of “#” or does not

include any copies of this symbol. Others are followed when ω = µ#ν for µ ∈ {0,1}⋆ and

ν ∈ {0,1,#}⋆, but at least one of µ or ν begins with “0” and has length at least two.

1



q0start

s1

s2

s3

s4

s5

s6

s7

s8

s9

q1

A

C

B

D

E

F

H

G

I

J

K

L

M

N

O

P

R

A: δ(q0,0,⊔,⊔) = (s1, (0̇,R), (0̇,R), (⊔,S))
B: δ(s1,#,⊔,⊔) = (s3, (#,R), (⊔,S), (⊔,S))

C: δ(q0,1,⊔,⊔) = (s2, (1̇,R), (1̇,R), (⊔,S))
D For all σ ∈ {0,1}, δ(s2, σ,⊔,⊔) = (s2, (σ,R), (σ,R), (⊔,S))
E δ(s2,#,⊔,⊔) = (s3, (#,R), (⊔,S), (⊔,S))

F : δ(s3,0,⊔,⊔) = (s4, (0,R), (⊔,S), (0̇,R))
G δ(s4,⊔,⊔,⊔) = (s6, (⊔,S), (⊔,S), (⊔,S))

H : δ(s3,1,⊔,⊔) = (s5, (1,R), (⊔,S), (1̇,R))
I: For all σ ∈ {0,1}, δ(s5, σ,⊔,⊔) = (s5, (σ,R), (⊔,S), (σ,R))
J : δ(s5,⊔,⊔,⊔) = (s6, (⊔,S), (⊔,S), (⊔,S))
K: δ(s6,⊔,⊔,⊔) = (s7, (⊔,L), (⊔,S), (⊔,S))
L: For all σ ∈ {0,1,#}, δ(s7, σ,⊔,⊔) = (s7, (⊔,L), (⊔,S), (⊔,S))

M : For all σ ∈ {0̇, 1̇}, δ(s7, σ,⊔,⊔) = (s8, (⊔,S), (⊔,L), (⊔,S))
N : For all σ ∈ {0,1}, δ(s8,⊔, σ,⊔) = (s8, (⊔,S), (σ,L), (⊔,S))

O: For all σ ∈ {0̇, 1̇}, δ(s8,⊔, σ,⊔) = (s9, (⊔,S), (σ,S), (⊔,L))

P : For all α ∈ {0̇, 1̇} and for all β ∈ {0,1}, δ(s9,⊔, α, β) = (s9, (⊔,S), (α,S), (β,L))

R: For all α, β ∈ {0,1}, δ(s9,⊔, α̇, β̇) = (q1, (⊔,S), (α,S), (β,S))

Figure 1: Component of a 3-Tape Turing Machine

1. Show that q0 ω ♯ q0 ♯ q0 ⊢⋆ qhalt ♯ qhalt ♯ qhalt, for ω ∈ {0,1,#}⋆, in each of the following

cases.

(a) ω = λ.

2



(b) ω begins with “#”.

(c) ω = 0.

(d) ω = 0α, for a string α ∈ {0,1,#}⋆ that begins with either “0” or “1”.

(e) ω begins with “1” but does not include any copies of “#”.

(f) ω = µ#, where µ is the unpadded binary representation of some non-negative

integer.

(g) ω = µ#0α, where µ is the unpadded binary representation of some non-negative

integer, and α is a non-empty string in {0,1,#}⋆.

(h) ω begins with µ#1, where µ is the unpadded binary representation of some non-

negative integer, but ω includes at least two copies of “#”.

Note that if none of the above cases hold, then ω = µ# ν, where µ, ν ∈ {0,1} are the

unpadded binary representations of a pair of non-negative integers.

2. Suppose, next, that ω = µ# ν, where µ and ν are the unpadded binary representations

of a pair of non-negative integers. For a non-empty string

ζ = α1α2 . . . αℓ

with length ℓ ≥ 1 (and with α1, α2, . . . , αℓ ∈ {0,1}, let

ζM = α̇1α2 . . . αℓ

— so that the leftmost symbol, α, has been replaced in ζM by the corresponding “dotted”

symbol, α̇1, and no other symbols have been changed.

(a) Show that q0 µ# ν ♯ q0 ♯ q0 ⊢
⋆ µM # s3 ν ♯ µM s3 ♯ s3.

(b) Show that µM # s3 ν ♯ µM s3 ♯ s3 ⊢
⋆ µM # ν s6 ♯ µM s6 ♯ νM s6.

(c) Show that µM # ν s6 ♯ µM s6 ♯ νM s6 ⊢
⋆ s8 ♯ µM s8 ♯ νM s8.

(d) Show that s8 ♯ µM s8 ♯ νM s8 ⊢
⋆ s9 ♯ s9 µM ♯ νM s9.

(e) Show that s9 ♯ s9 µ9 ♯ νM s9 ⊢
⋆ q1 ♯ q1 µ ♯ q1 ν.

Note that it now follows that q0 µ# ν ⊢⋆ q1 ♯ q1 µ ♯ q1 ν.

3. Use the above to show that the component of a Turing machine given above, and at the

beginning of Tutorial Exercise #12, correctly implements step 1 of the algorithm for the

addition of binary numbers that is discussed in the presentation for Lecture #12.

3



Additional Problems

4. Modify the component of a 3-tape Turing machines shown at the beginning of Tutorial Ex-

ercise #12, and above, in order to produce a similar component that implements step #1

of the algorithm shown in Figure 2 of Tutorial Exercise #12, instead of step #1 of the

algorithm shown in Figure 1 of the notes for Lecture #12 — and explain, briefly, why your

answer is correct.

5. Once again, let Σbinary = {0,1} and let Σpair = {0,1,#}. Consider a function

fmult : Σ
⋆

pair → Σ⋆

binary

such that the following properties are satisfied, for every string ω ∈ Σ⋆
pari:

• If ω = µ# ν, where µ, ν ∈ Σ⋆

binary are the unpadded binary representations of a

pair of non-negative integers n and m, respectively, then fmult(ω) is the unpadded

binary representation of their product, n×m.

• Otherwise fmult(ω) = λ, the empty string.

(a) Write an algorithm (similar to the algorithms that have been considered in the pre-

sentation for Lecture #12 and earlier on, in this exercise) to compute this function

— assuming that you may now include a step

i := i+ j

for non-negative integers i and j as a step in your algorithm.

(b) Design a multi-tape Turing machine that computes the function fmult and sketch a

proof that your algorithm is correct.

Ideally, if you see how the above problems can be solved, then you can also see (at least

roughly) how the following additional problems could be solved too:

• Given a string ω ∈ Σ⋆
pair, design a Turing machine to decide whether ω = µ# ν, for a

pair of strings µ, ν ∈ Σ⋆
binary that are the unpadded binary representations of integers n

and m such that n < m.

• Design Turing machines to compute functions

fquotient : Σ
⋆

pair → Σ⋆

binary and fremainder : Σ
⋆

pair → Σ⋆

binary

in order to implement integer division with remainder (with non-negative integers as in-

puts) as well.

4


