
CPSC 351 — Tutorial Exercise #12

Multi-Tape Turing Machines

About This Exercise

This exercise is intended to give you practice working with textbfmulti-tape Turing machines.

Thus it gives you practice applying material introduced in Lecture #12.

Getting Started

Initial questions concern a component of a 3-tape Turing machine, with input alphabet Σpair =
{0,1,#}, tape alphabet Γ = {0,1,#, 0̇, 1̇, #̇,⊔}, and, and with transitions as shown in Figure 1

pn page 2. In order to keep the picture simpler, the halt state is shown in the diagram as “qH”

instead of qhalt. Transitions out of r0, r1, r2, r3, r4 or r5 that are not shown will never be used

(for the computation being considered) but should go to the halting state, without changing the

contents of tapes or positions of tape heads.

1. To begin, suppose consider an execution of this component that begins with the Turing

machine in state r0, with 0̇1 on the first tape, with the tape head pointing to the copy

of “1”, with 0̇ on the second tape, with the tape point pointing to the copy of “⊔” imme-

diately to the right of the “0̇” on the tape, and with third tape head filled copies of “⊔”

and the tape head pointing to the leftmost cell — so that the Turing machine is in the

configuration represented by the string

0̇ r0 1 ♯ 0̇ r0 ♯ r0

Show that, after a finite number of steps, the execution halts, with all tape heads filled

with copies of “⊔” and with all tape heads pointing to the leftmost cells of the tapes.

1



r0start r1 r2 r3 r4

r5qH

A

B

C

D E

F

G

H

I
J

A : For all σ ∈ Σpair, δ(r0, σ,⊔,⊔) = (r0, (σ,R), (⊔,S), (⊔,S))
B: δ(r0,⊔,⊔,⊔) = (r1, (⊔,L), (⊔,S), (⊔,S))
C: For all σ ∈ Σpair, δ(r1, σ,⊔,⊔) = (r1, (⊔,L), (⊔,S), (⊔,S))

D: For all σ ∈ {0̇, 1̇, #̇}, δ(r1, σ,⊔,⊔) = (r2, (⊔,S), (⊔,S), (⊔,S))
E: δ(r2,⊔,⊔,⊔) = (r3, (⊔,S), (⊔,L), (⊔,S))
F : For all σ ∈ Σpair, δ(r3,⊔, σ,⊔) = (r3, (⊔,S), (⊔,L), (⊔,S))

G: For all σ ∈ {0̇, 1̇,⊔}, δ(r3,⊔, σ,⊔) = (r4, (⊔,S), (⊔,S), (⊔,S))
H : δ(r4,⊔,⊔,⊔) = (r5, (⊔,S), (⊔,S), (⊔,L))
I: For all σ ∈ Σpair, δ(r5,⊔,⊔, σ) = (r5, (⊔,S), (⊔,S), (⊔,L))

J : For all σ ∈ {0̇, 1̇,⊔}, δ(r5,⊔,⊔, σ) = (qhalt, (⊔,S), (⊔,S), (⊔,S)))

Figure 1: Component of a 3-Tape Turing Machine

Problems Discussed in the Tutorial

Analyzing the Component in Figure 1

2. Consider an execution of component in Figure 1 that begins with the Turing machine in

a configuration represented by a string

µL r0 µR ♯ µ2 r0 ♯ µ3 r0

where µL begins with either 0̇ or 1̇ and all other symbols in µL and µR are in Σpair, either

µ2 begins with one of 0̇ or 1̇ and all the other symbols in µ2 are in {0,1}, or µ2 = λ,

and either µ3 begins with one of 0̇ or 1̇ and all the other symbols in µ3 are in {0,1}, or

µ3 = λ.

(a) Briefly explain why µL r0 µR ♯ µ2 r0 ♯ µ3 r0 ⊢
⋆ µL µR r0 ♯ µ2 r0 ♯ µ3 r0.

(b) Briefly explain why µL µR r0 ♯ µ2 r0 ♯ µ3 r0 ⊢
⋆ r2 ♯ µ2 r2 | µ3 r2.

(c) Briefly explain why r2 ♯ µ2 r2 ♯ µ3 r2 ⊢
⋆ r4 ♯ r4 ♯ µ3 r4.

2



(d) Briefly explain why r4 ♯ r4 ♯ µ3 r4 ⊢
⋆ qhalt ♯ qhalt ♯ qhalt.

It follows from this that this component can be used to continue from a configuration

µL r0 µR ♯ µ2 r0 ♯ µ3 r0

— with µL, µR, µ2 and µ3 as described here — to the end of a computation in which the

empty string is returned as output.

This begins the design and analysis of a component, of a 3-tape Turing machine, that imple-

ments step 1 of the algorithm, for the addition of binary numbers, discussed in the presentation

for Lecture #12. The additional practice problems, for this tutorial exercise, complete the design

and analysis of such a component — by solving more problems like the above ones.

Subtraction: Implementing an Algorithm for the Binary “Monus” Operation

Let n and m be non-negative integers. Then n monus m, written “n −̇m”, is as follows:

n −̇m =

{

n−m if ≥ m,

0 if n < m.

Once again, let Σbinary = {0,1} and let Σpair = {0,1,#}. Consider a function

fmonus : Σ
⋆

pair → Σ⋆

binary

such that the following properties are satisfied for every string ω ∈ Σ⋆

pair:

• If ω = µ# ν, where µ, ν ∈ Σ⋆

binary are the unpadded binary representations of a pair

of non-negative integers n and m, respectively, then fmonus(ω) is the unpadded binary

representation of n −̇m.

• Otherwise fmonus(ω) = λ, the empty string.

Now consider the algorithm shown in Figure on page 4.

3. Prove that if this algorithm is executed with a string ω ∈ Σ⋆

pair as input then the execution

of the algorithm halts, with fmonus(ω) returned as output.

4. As noted above, problems on the practice exercise complete the design of a component

of a 3-tape Turing machine that implements step #1 of the algorithm, for the addition

of binary numbers, discussed in the presentation for Lecture #12. You may assume —

when solving this problem — that this component can be modified, so that implements

step #1 of the algorithm shown here, in Figure #1, instead.

3



On input ω ∈ Σpair:

1. If ω has the form µ# ν, where µ and ν are the unpadded binary representations

of non-negative integers then write µ onto Tape #3 and write ν onto Tape #2,

erasing Tape #1 and moving all tape heads to their leftmost positions. That is,

go from the configuration

q0 ω ♯ q0 ♯ q0 = q0 µ# ν ♯ q0 ♯ q0

to a configuration

q1 ♯ q1 ν ♯ q1 µ

and continue to the next step. On the other hand, if ω does not have this form

then erase the first tape, moving the tape head back to its leftmost position, and

halt — that is, go from the configuration q0 ω ♯ q0 ♯ q0 to the configuration

qhalt ♯ qhalt ♯ qhalt

Let n and m be the non-negative integers whose representations are on Tapes #3

and #2, respectively.

2. while ((n > 0) and (m > 0)) {

3. n := n− 1 (updating Tape #3 to make this change)

4. m := m− 1 (updating Tape #2 to make this change)

}

5. Erase the non-blank string that is now on Tape #2 — so that the tape head

for this points to its leftmost cell — and go to state qhalt, in order to return the

unpadded binary representation of n.

Figure 2: An Algorithm to Compute the Binary “Monus” Function

Describe how to modify the Turing machine to compute fadd, discussed in the presenta-

tion for Lecture #12, to obtain a 3-tape Turing machine to compute the function fmonus,

and explain, briefly, why your Turing machine is correct.

4


