CPSC 351 — Tutorial Exercise #12
Multi-Tape Turing Machines

About This Exercise

This exercise is intended to give you practice working with textbfmulti-tape Turing machines.
Thus it gives you practice applying material introduced in Lecture #12.

Getting Started

Initial questions concern a component of a 3-tape Turing machine, with input alphabet Xy, =
{0,1,#}, tape alphabet I' = {0, 1, #, 0, 1, #, U}, and, and with transitions as shown in Figure 1
pn page 2. In order to keep the picture simpler, the halt state is shown in the diagram as “qg”
instead of gngt. Transitions out of rq, 71, 19, 13, 14 Or r5 that are not shown will never be used
(for the computation being considered) but should go to the halting state, without changing the
contents of tapes or positions of tape heads.

1. To begin, suppose consider an execution of this component that begins with the Turing
machine in state o, with 01 on the first tape, with the tape head pointing to the copy
of “1”, with 0 on the second tape, with the tape point pointing to the copy of “LI” imme-
diately to the right of the “0” on the tape, and with third tape head filled copies of “L”
and the tape head pointing to the leftmost cell — so that the Turing machine is in the
configuration represented by the string

Orolﬂ()roﬂro

Show that, after a finite number of steps, the execution halts, with all tape heads filled
with copies of “LI” and with all tape heads pointing to the leftmost cells of the tapes.

F

A C
N
1
W

For all o € ¥pair, 0(r0,0,U, L) = (ro, (0,R), (L, S), (L, S))

d(ro, U, U, 1) = (r1, (L, L), (L, S),(,S))

Forall o € ¥pqir, 0(r1,0,U,L) =

Forall o € {0,1,#}, 6(r1,0,U,U
L

For all o € ¥pair, 0(r3,U, 0, L)
Forallo € {0,1,U}, 6(r3, U, 0,
d(rq, U, U, 1) = (75, (L, 8), (L, S),
For all o € ¥pair, 0(r5,U,U,0) = (
Forallo € {0,1,U}, 6(rs, U, U, 0)

(U, L))

SO QW e
d
>
C
C
=
Il
=
ol
=
z
=
Z

= (Qhalta (|—|7 S)7 (|—|7
Figure 1: Component of a 3-Tape Turing Machine

Problems Discussed in the Tutorial

Analyzing the Component in Figure 1

2. Consider an execution of component in Figure 1 that begins with the Turing machine in
a configuration represented by a string

KL To R B 270 § p3 70

where 7, begins with either O or 1 and all other symbols in iy, and ug are in Xpg;, either
1o begins with one of 0 or 1 and. all the other symbols in uy are in {0,1}, or ps = A,
and either u3 begins with one of O or 1 and all the other symbols in p3 are in {0,1}, or
p3 = A.

(a) Briefly explain why prrour § pamo § psro B* pr prro 8 p2 7o 8 13 70-
(o) Briefly explain why pp prro § pr2ro § pr3ro " ra § 2o | 3 ra.
(C) Brlefly explain Why T2 ﬁ U2 72 ﬁ u3 o > T4 ﬁ T4 ﬁ 13 T4.

(d) Briefly explain why r4 f 4 # 374 F* ghait § Ghait £ Ghatt-

It follows from this that this component can be used to continue from a configuration

mLro MR § 270 § 13 To

— with ur, pr, po and us as described here — to the end of a computation in which the
empty string is returned as output.

This begins the design and analysis of a component, of a 3-tape Turing machine, that imple-
ments step 1 of the algorithm, for the addition of binary numbers, discussed in the presentation
for Lecture #12. The additional practice problems, for this tutorial exercise, complete the design
and analysis of such a component — by solving more problems like the above ones.

Subtraction: Implementing an Algorithm for the Binary “Monus” Operation

Let n and m be non-negative integers. Then n monus m, written “n — m”, is as follows:

. n—m if >m,
n—m=
0 if n < m.

Once again, let Xpinary = {0, 1} and let Xpair = {0, 1, #}. Consider a function

. * *
meﬂUS : Epair — Ebinary

*

such that the following properties are satisfied for every string w € Zpair:

* If w = pu#v, where p,v € zgmary are the unpadded binary representations of a pair
of non-negative integers n and m, respectively, then fronus(w) is the unpadded binary

representation of n — m.

+ Otherwise fmonus(w) = A, the empty string.
Now consider the algorithm shown in Figure on page 4.

3. Prove that if this algorithm is executed with a string w € X5, as input then the execution

of the algorithm halts, with fmonus(w) returned as output.

4. As noted above, problems on the practice exercise complete the design of a component
of a 3-tape Turing machine that implements step #1 of the algorithm, for the addition
of binary numbers, discussed in the presentation for Lecture #12. You may assume —
when solving this problem — that this component can be modified, so that implements
step #1 of the algorithm shown here, in Figure #1, instead.

On input w € Ypair:

1.

If w has the form . # v, where 1 and v are the unpadded binary representations
of non-negative integers then write 1 onto Tape #3 and write v onto Tape #2,
erasing Tape #1 and moving all tape heads to their leftmost positions. That is,
go from the configuration

qowlqofiqo = qou#viqtaq
to a configuration
aiqaviqp

and continue to the next step. On the other hand, if w does not have this form
then erase the first tape, moving the tape head back to its leftmost position, and
halt — that is, go from the configuration qow ff qo # qo to the configuration

Ghalt ghatt § Ghalt

Let n and m be the non-negative integers whose representations are on Tapes #3
and #2, respectively.

2.

3.
4.

while ((n > 0) and (m > 0)) {

n :=n — 1 (updating Tape #3 to make this change)

m =m — 1 (updating Tape #2 to make this change)
}
Erase the non-blank string that is now on Tape #2 — so that the tape head
for this points to its leftmost cell — and go to state gnhay, in order to return the
unpadded binary representation of n.

Figure 2: An Algorithm to Compute the Binary “Monus” Function

Describe how to modify the Turing machine to compute faqq, discussed in the presenta-
tion for Lecture #12, to obtain a 3-tape Turing machine to compute the function fmonus,

and explain, briefly, why your Turing machine is correct.

