
CPSC 351 — Tutorial Exercise #11

Additional Practice Problems

These problems will not be discussed during the tutorial, and solutions for these problems will

not be made available. They can be used as “practice” problems that can help you practice

skills considered in the lecture presentation for Lecture #11, or in Tutorial Exercise #11.

Practice Problems

Turing Machines That Clean Up After Themselves — Completing the Simulation

Suppose that “Turing machines that clean up after themselves” are as defined in Tutorial Exer-

cise #11. Let L ⊆ Σ⋆, for an alphabet Σ, let

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

such that L = L(M). By solving the problems on Tutorial Exercise #11 you began the devel-

opment of a Turing machine

M = (Q̂,Σ, Γ̂, δ̂, q̂0, q̂accept, q̂reject)

that cleans up after itself, such that L = L(M̂) as well — and, furthermore, such that M̂
decides L if M does.

Representing a Configuration of M

Let #L, and #R be “new” symbols, that is, symbols that do not belong to Q ∪ Γ, and let

Γ̂ = Γ ∪ {#L,#R}.

Suppose that

ω = α1α2 . . . αn
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is a string in Σ⋆ — where n is a non-negative integer and α1, α2, . . . , αn ∈ Σ⋆ (so that n is the

length of ω).

A configuration of M , that is reached during M ’s execution on input ω, will be represented

(during a simulation by M̂ ) by itself — except that the symbols will be shifted over by one

position to the right, so that the new symbol “#L” appears on the leftmost cell of the tape —

and so that a single copy of “#R” also appears on the tape, to mark the farthest position that

has either ever been reached,1 or that currently stores a non-blank symbol in Γ.

Suppose, in particular, that a configuration of M is represented by a string

µ1 q µ2 (1)

where q ∈ Q and µ1, µ2 ∈ Γ⋆ — such that either µ2 = λ of the rightmost symbol of µ2 is a

non-blank symbol in Γ.

• If µ2 is not the empty string then, for a non-negative integer ℓ, suppose that the farthest

position on the tape that M ’s tape head has occupied, up until this point, is ℓ cells to

the right of the rightmost symbol in µ2. Then M̂ ’s representation of the configuration at

line (1) is a configuration represented by the string

#L µ1 q µ2 ⊔ℓ
#R (2)

• If µ2 is the empty string then, for a non-negative integer ℓ suppose that the farthest

position on the tape that M ’s tape head has occupied, up until this point, is ℓ cells to the

right of its current position. Then M̂ ’s representation of the configuration at line (1) is a

configuration represented by the string

#L µ1 q ⊔ℓ+1
#R (3)

For each string C representing a configuration of M , let ϕ(C) be the string representing M̂ ’s

representation of this configuration, as described above.

Initialization — Proving that an Assumption is Satisfied

Along with M̂ ’s start state, q̂0, let us include “new” states q̂1 and q̂2 in Q̂, defining transitions as

follows:

• Let δ̂(q̂0,⊔) = (q̂1,#L,R).

• For every symbol σ ∈ Γ̂, let δ̂(q̂1, σ) = (q̂2, σ,R).

1This condition is being used to make the representation of a configuration unique, but also to make it reasonably

easy to describe the simulation.
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• For every symbol σ ∈ Γ̂, let δ̂(q̂2, σ) = (q0,#R,L).

Note that, at this point, all transitions out of q̂1 and q̂2 (but not all transitions out of q̂0) have

been defined.

1. Prove that, in M̂ , q̂0 ⊢
⋆
#L q0 ⊔ #R.

To continue, let us include new states q̂3,σ in Q̂, for every non-blank symbol σ ∈ Γ̂, as well as

a new state q̂4. Let us define new transitions as follows:

• For every non-blank symbol σ ∈ Γ̂, let δ̂(q̂0, σ) = (q̂3,σ,#L,R).

• Let δ̂(q̂3,σ,⊔) = (q̂4, σ,R).

• For every symbol σ ∈ Γ̂, let δ̂(q̂4, σ) = (q0,#R,L).

Note that, at this point, all transitions out of q̂0 (along with all transitions out of q̂1, q̂2, and q̂4 —

but not all transitions out of q̂3) have been defined.

2. Suppose that ω = σ ∈ Σ, so that ω is a string in Σ⋆ with length one. Prove that, in M̂ ,

q̂0 ω ⊢⋆
#L q0 ω #R.

Now let us include new states q̂5,σ in Q̂, for every non-blank symbol σ ∈ Γ̂, as well as new

states q̂6 and q̂7. Let us define new transitions as follows:

• For all non-blank symbols α, β ∈ Γ̂, let δ̂(q̂3,α, β) = (q̂5,β, α,R).

• For all non-blank symbols α, β ∈ Γ̂, let δ̂(q̂5,α, β) = q̂5,β, α,R).

• For all non-blank symbols α ∈ Γ̂, let δ̂(q̂5,α,⊔) = (q̂6, α,R).

• For all symbols σ ∈ Γ̂, let δ̂(q̂6, σ) = (q̂7,#L,L).

• For all symbols σ ∈ Γ̂ such that σ 6= #L, let δ̂(q̂7, σ) = (q̂7, σ,L).

• Finally, let δ̂(q̂7,#L) = (q0,#L,R).

Note that, at this point, all transitions for states q̂0, q̂1, q̂2, q̂4, q̂6, q̂7, and q̂3,σ and q̂5,σ, for all

σ ∈ Γ̂, have been defined.

3. Let ω ∈ Σ⋆ such that |ω| ≥ 2. Prove that, in M̂ , q̂0 ω ⊢⋆
#L q0 ω #R.

This problem is more challenging than the first two, because it requires more than just a

trace of execution. If you attempt it then please consider tracing M̂ ’s execution on several

strings with lengths two, three, and four — so that you better understand what the new
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states are being used for. You should then be able to write down and prove a sequence of

claims (somewhat resembling claims that you proved when solving problems on Tutorial

Exercise #10, which can be proved in similar ways) that can be used to establish the

above result.

Note that, if you solved problems #1–#3, above, then you have shown that the first assump-

tion, concerning “Initialization”, that was used in Tutorial Exercise #8, is satisfied.

Completing the Simulation

Now let include states qaccept,R, qaccept,L, qreject,R, qreject,L, q̂accept and q̂reject in Q̂ — noting that

q̂accept and q̂reject are the accepting and rejecting states of M̂ , respectively.

Suppose that we continue the definition of the transition function δ̂, as follows.

• For every symbol σ ∈ Γ (so that σ /∈ {#L,#R}), δ̂(qaccept, σ) = qaccept,R, σ,R).

• For every symbol σ ∈ Γ̂ such that σ 6= #R, δ̂(qaccept,R, σ) = (qaccept,R, σ,R).

• δ̂(qaccept,R,#R) = (qaccept,L,⊔,L).

• For every symbol σ ∈ Γ̂ such that σ 6= #L, δ̂(qaccept,L, σ) = (qaccept,L,⊔,L).

• δ̂(qaccept,L,#L) = (q̂accept,⊔,L).

4. Prove that, for every accepting configuration CA of M , ϕ(CA) ⊢
⋆ q̂accept (during an exe-

cution of M̂ ).

5. Complete the definition of δ̂ by introducing transitions for states qreject, qreject,R and qreject,L,

and use these to prove that, for every rejecting configuration CR of M , ϕ(CR) ⊢⋆ q̂reject

(during an execution of M̂ ).

Note that, if you have solved all these problems, then you have shown that the assumptions

concerning initialization and cleanup, given in Tutorial Exercise #11, can be satisfied. You

have, therefore, completed a proof that the sets of recognizable and decidable languages are

not changed if they are defined using Turing machines that clean up after themselves, instead

of standard Turing machines.
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Other Turing Machine Variants

6. A Turing Machine That Never Erases is a Turing machine

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

— as defined in Lecture #10 — which satisfies one additional condition: For every state

q ∈ Q \ {qaccept, qreject}, and for every symbol σ ∈ Γ, if

δ(q, σ) = (r, τ, d)

for r ∈ Q, τ ∈ Γ, and d ∈ {L,R}, then τ 6= ⊔. That is, M never writes a copy of “⊔” onto

its tape.

Prove that the sets of recognizable languages are not changed, if they are defined using

“Turing Machines That Never Erase” instead of standard Turing machines.

7. One might also imagine Turing Machines That Clean Up After Themselves and That

Never Erase — which are standard Turing machines that satisfy the additional require-

ments for both “Turing Machines That Clean Up After Themselves” and “Turing Machines

That Never Erase”.

Would the sets of recognizable and decidable languages be changed, if they were de-

fined using these new kinds of Turing machines?

Indeed, do these new kinds of Turing machines even exist?
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