CPSC 351 — Tutorial Exercise #11
Additional Practice Problems

These problems will not be discussed during the tutorial, and solutions for these problems will
not be made available. They can be used as “practice” problems that can help you practice
skills considered in the lecture presentation for Lecture #11, or in Tutorial Exercise #11.

Practice Problems

Turing Machines That Clean Up After Themselves — Completing the Simulation

Suppose that “Turing machines that clean up after themselves” are as defined in Tutorial Exer-
cise #11. Let L C ¥*, for an alphabet X, let

M = (Q> ,T,9, qo, Gaccept> Qreject)

such that L = L(M). By solving the problems on Tutorial Exercise #11 you began the devel-
opment of a Turing machine

M = (Qa ¥,I,9, Z]\()v Z]\accepty areject)

that cleans up after itself, such that L = L(J\//.T) as well — and, furthermore, such that M
decides L if M does.

Representing a Configuration of M
Let #7,, and #r be “new” symbols, that is, symbols that do not belong to Q@ U T, and let
T =T U {#,#g).

Suppose that
W= Qa1 ...0n,



is a string in ¥* — where n is a non-negative integer and a1, as, . .., a, € X* (so that n is the
length of w).

A configuration of M, that is reached during M’s execution on input w, will be represented
(during a simulation by M) by itself — except that the symbols will be shifted over by one
position to the right, so that the new symbol “#;” appears on the leftmost cell of the tape —
and so that a single copy of “#z” also appears on the tape, to mark the farthest position that

has either ever been reached,’ or that currently stores a non-blank symbol in T.
Suppose, in particular, that a configuration of M is represented by a string

1 q 2 (1)

where ¢ € Q and u1, us € I' — such that either us = X of the rightmost symbol of i is a
non-blank symbol in T'.

* If uo is not the empty string then, for a non-negative integer ¢, suppose that the farthest
position on the tape that M'’s tape head has occupied, up until this point, is £ cells to
the right of the rightmost symbol in pi2. Then M'’s representation of the configuration at
line (1) is a configuration represented by the string

#1 1 que U #R (2)

* If uo is the empty string then, for a non-negative integer ¢ suppose that the farthest
position on the tape that M'’s tape head has occupied, up until this point, is ¢ cells to the
right of its current position. Then M’s representation of the configuration at line (1) is a
configuration represented by the string

#r g U #p (3)

For each string C representing a configuration of M, let ¢(C) be the string representing M’s
representation of this configuration, as described above.

Initialization — Proving that an Assumption is Satisfied

Along with M's start state, o, let us include “new” states ¢ and ¢ in @ defining transitions as
follows:

~

e Let (5(60, LJ) = (Zjl, #L,R).
« For every symbol o € T, let S((jl,a) = (¢2,0,R).

This condition is being used to make the representation of a configuration unique, but also to make it reasonably
easy to describe the simulation.



« For every symbol o € T, let g((jg,a) = (qo, #g,L).

Note that, at this point, all transitions out of ¢; and g» (but not all transitions out of g) have
been defined.

1. Prove that, in ]\7 qo F* #r qo U #p.

To continue, let us include new states g3, in @, for every non-blank symbol o € T', as well as
a new state g;. Let us define new transitions as follows:

« For every non-blank symbol o € T, let S(qAO, o) = (30, #1,R).
- Let 8(3.0, 1) = (4,0, R).
« For every symbol o € T, let 3(54,0) = (qo, #g,L).

Note that, at this point, all transitions out of gy (along with all transitions out of g1, ¢», and ¢ —
but not all transitions out of g3) have been defined.

2. Suppose that w = o € %, so that w is a string in X* with length one. Prove that, in ]\/4\,
é\ow * #LQQw#R.

Now let us include new states g5, in @ for every non-blank symbol o € T, as well as new
states g and ¢~. Let us define new transitions as follows:

« For all non-blank symbols «, 3 € T, let 3(67370”5) = (¢5.3, o, R).

For all non-blank symbols «, 8 € T, let 3([]\57a,6) = 5,8, 0, R).
For all non-blank symbols « € T, let S(q},a, L) = (gs, o, R).

For all symbols o € T, let 3(@6, o) = (q7,#1,L).

For all symbols o € T such that o # #1, let 3([]}, o) = (qr,0,L).

Finally, let 6(G7, #1) = (qo, #L,R).

Note that, at this point, all transitions for states qo, 1, 2, @4, g6, g7, and g3, and g5, for all
o € T', have been defined.

3. Let w € ¥* such that |w| > 2. Prove that, in ]\/4\, Qow F* #1 gow HR.

This problem is more challenging than the first two, because it requires more than just a
trace of execution. If you attempt it then please consider tracing M’s execution on several
strings with lengths two, three, and four — so that you better understand what the new



states are being used for. You should then be able to write down and prove a sequence of
claims (somewhat resembling claims that you proved when solving problems on Tutorial
Exercise #10, which can be proved in similar ways) that can be used to establish the
above result.

Note that, if you solved problems #1—#3, above, then you have shown that the first assump-

tion,

concerning “Initialization”, that was used in Tutorial Exercise #8, is satisfied.

Completing the Simulation

Now let include states gacceptr, Gaccept.L> GrejectRs dreject,Ls Jaccept aNd Greject IN @ — noting that
Jaccept @Nd Greject are the accepting and rejecting states of M, respectively.

Suppose that we continue the definition of the transition function 3, as follows.

~

For every symbol ¢ € T" (so that o ¢ {#L7 #R}); 5(Qaccept; U) = Qaccept,R; 05 R)-

For every symbol ¢ € T such that o %+ #g, S(QaccepLR, 0) = (Qacceptr, 0, R).

5(Qaccept,R7#R) = (Qaccept,L; U7L)-
For every symbol ¢ € T such that o =+ #r, g(qaccept,L, o) = (Gaccept,L, L, L).

~

5(Qaccept7L7 #L) = (z]\acceph L, L)-

Prove that, for every accepting configuration C4 of M, ¢(Ca) F* Gaccept (during an exe-
cution of M).

Complete the definition of § by introducing transitions for states Greject> Greject,r AN Greject L.»
and use these to prove that, for every rejecting configuration Cr of M, ¢(Cr) F* Qreject

(during an execution of M).

Note that, if you have solved all these problems, then you have shown that the assumptions
concerning initialization and cleanup, given in Tutorial Exercise #11, can be satisfied. You
have, therefore, completed a proof that the sets of recognizable and decidable languages are
not changed if they are defined using Turing machines that clean up after themselves, instead
of standard Turing machines.



Other Turing Machine Variants

6. A Turing Machine That Never Erases is a Turing machine

M = (Qa 2,T0, 4, qo, Gaccept; Qreject)

— as defined in Lecture #10 — which satisfies one additional condition: For every state
q € Q \ {Qaccept7 Qreject}, and for every Symbol o c P, if

0(q,0) = (r,7,d)
forr € Q, 7 €T, and d € {L,R}, then 7 # L. Thatis, M never writes a copy of “LI” onto
its tape.
Prove that the sets of recognizable languages are not changed, if they are defined using

“Turing Machines That Never Erase” instead of standard Turing machines.

7. One might also imagine Turing Machines That Clean Up After Themselves and That
Never Erase — which are standard Turing machines that satisfy the additional require-
ments for both “Turing Machines That Clean Up After Themselves” and “Turing Machines
That Never Erase”.

Would the sets of recognizable and decidable languages be changed, if they were de-
fined using these new kinds of Turing machines?

Indeed, do these new kinds of Turing machines even exist?



