
CPSC 351 — Tutorial Exercise #11

Simulations and Simple Turing Machine Variants

About This Exercise

This exercise is intended to give you practice using simulations to relate the computational

power of machine models — especially variants of Turing machines. Thus it gives you practice

applying material introduced in Lecture #11.

Turing Machines That Clean Up After Themselves

A Turing machine that cleans up after itself is a “standard” Turing machine (that is, the kind

of Turing machine introduced in Lecture #10)

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

which satisfies an additional property: M ’s tape head is always erased (that is, filled with copies

of “⊔”), with its tape head pointing to the leftmost cell of the tape, when a computation ends.

Thus M has only one accepting configuration, which is represented by the string “qaccept”,

and M has only one rejecting configuration, which is represented by the string“qreject”.

This first problem should easy to solve, and it solutions should only be a few lines.

1. Let L ⊆ Σ⋆, for an alphabet Σ.

(a) Prove that if there exists a Turing machine M that cleans up after itself, such that

L = L(M), then L is Turing-recognizable (that is, it is the language of a “standard”

Turing machine).

(b) Prove that if there exists a Turing machine M that cleans up after itself, such that

M decides L, then L is Turing-decidable (that it, there exists a “standard” Turing

machine that decides L).

The goal of the rest of this exercise is to develop a proof of the following.

1



Claim. Let L ⊆ Σ⋆, for an alphabet Σ.

(a) If L is Turing-recognizable then there exists a Turing machine M̂ that cleans up after itself

such that L = L(M̂).

(b) If L is Turing-decidable then there exists a Turing machine M̂ that cleans up after itself

such that M̂ decides L.

With that noted, let L ⊆ Σ⋆, for an alphabet Σ, and let

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

such that L = L(M). The above claim can be proved by describing a Turing machine

M = (Q̂,Σ, Γ̂, δ̂, q̂0, q̂accept, q̂reject)

that cleans up after itself, and proving that L = M̂ as well — proving, in addition, that if M
decides L then M̂ decides L too.

Representing a Configuration of M

Let #L, and #R be “new” symbols, that is, symbols that do not belong to Q ∪ Γ, and let

Γ̂ = Γ ∪ {#L,#R}.

Suppose that

ω = α1α2 . . . αn

is a string in Σ⋆ — where n is a non-negative integer and α1, α2, . . . , αn ∈ Σ⋆ (so that n is the

length of ω).

A configuration of M , that is reached during M ’s execution on input ω, will be represented

(during a simulation by M̂ ) by itself — except that the symbols will be shifted over by one

position to the right, so that the new symbol “#L” appears on the leftmost cell of the tape —

and so that a single copy of “#R” also appears on the tape, to mark the farthest position that

has either ever been reached,1 or that currently stores a non-blank symbol in Γ.

Suppose, in particular, that a configuration of M is represented by a string

µ1 q µ2 (1)

where q ∈ Q and µ1, µ2 ∈ Γ⋆ — such that either µ2 = λ of the rightmost symbol of µ2 is a

non-blank symbol in Γ.

1This condition is being used to make the representation of a configuration unique, but also to make it reasonably

easy to describe the simulation.

2



• If µ2 is not the empty string then, for a non-negative integer ℓ, suppose that the farthest

position on the tape that M ’s tape head has occupied, up until this point, is ℓ cells to

the right of the rightmost symbol in µ2. Then M̂ ’s representation of the configuration at

line (1) is a configuration represented by the string

#L µ1 q µ2 ⊔ℓ
#R (2)

• If µ2 is the empty string then, for a non-negative integer ℓ suppose that the farthest

position on the tape that M ’s tape head has occupied, up until this point, is ℓ cells to the

right of its current position. Then M̂ ’s representation of the configuration at line (1) is a

configuration represented by the string

#L µ1 q ⊔ℓ+1
#R (3)

For each string C representing a configuration of M , let ϕ(C) be the string representing M̂ ’s

representation of this configuration, as described above.

Initialization: A First Assumption

2. When progressing from M ’s start configuration on a non-empty string, ω ∈ Σ⋆, it is

necessary to move the symbols in M over to the right by one position — so each symbol

might be (briefly) erased from the tape.

Describe — briefly and informally — how M̂ can “remember” each symbol, between the

time that it has been erased and the time that it has been copied to a new position.

For this exercise, let us assume that states have been included in Q̂, and transitions have

been defined, such that, for ω ∈ Σ⋆, the following properties are satisfied:

• In M̂ , q̂0 ⊢
⋆
#L q0 ⊔ #R.

• If ω 6= λ then, in M̂ , q̂0 ω ⊢⋆
#L q0 ω #R.

In other words, let us assume that M̂ goes from its initial configuration on input ω, to its

representation of M ’s initial configuration on input ω, using a finite number of steps — for

every string ω ∈ Σ⋆.

Simulating a Step of M

To continue, note that (if configurations are to be represented as described above) each state

in Q must also be a state in Q̂ — that is, Q ⊆ Q̂.

3



Suppose, now, that M is in a non-halting configuration represented by a string C. Suppose, as

well, that the next step of M make use of a transition

δ(q, σ) = (r, τ, d) (4)

(for r ∈ Q, τ ∈ Γ, and d ∈ {L,R}) to move from the configuration represented by C to another

configuration, which is represented by a string C′.

To start things, off, let us require that

δ̂(q, σ) = δ(q, σ) = (r, τ, d) (5)

for every state q ∈ Q such that q /∈ {qaccept, qreject}, and for every symbol σ ∈ Γ.

If the transition δ̂(q, σ) is applied, and M̂ ’s tape head points to symbol in Γ (and not to ei-

ther “#L” or “#R”) then M̂ is now in its representation of the configuration (shown as) C′, as

desired. You may use this fact without proving it.

However, it is possible that M̂ ’s tape head is now pointing to “#L”, or to “#R”’, instead.

3. Suppose that, after the above transition has been applied, M̂ ’s tape head points to a

copy of “#L” — so that it must now be pointing to the leftmost cell on M̂ ’s tape.

(a) What does this mean about the configuration represented by C — that is, the con-

figuration that M was in immediately before this step? What does it mean about

the transition that is now being applied?

(b) How is the configuration that M̂ is in, after its transition is applied, related to M̂ ’s

representation of the configuration shown as C′ — that is, the configuration that M
is in after this step? (You should find that they are almost the same.)

(c) Describe how transitions δ̂(q,#L) can be defined, for q ∈ Q, so that M̂ ’s represen-

tation of the configuration shown as C′ can be reached, by taking one more step

of M̂ .

4. Suppose instead that, after the above transition has been applied, M̂ ’s tape head points

to a copy of “#R” so that it must be pointing the rightmost cell on M̂ ’s tape that does not

store a copy of “⊔”.

(a) What does this mean about the configuration represented by C — that is, the con-

figuration that M was in, immediately before this step? What does it mean about

the transition that that is now being applied?

(b) How is the configuration that M̂ is in, after this transition applied, related to M̂ ’s

representation of the configuration shown as C′ — that is, the configuration that M
is in after this step? (Once again, you should find that they are almost the same).

4



(c) Let us introduce new states once again — by setting

Q̇ = {q̇ | q ∈ Q}

(renaming state, as necessary, so that Q̇ ∩ Γ = ∅ and Q is also disjoint from the

states that have been included in Q̂, before this) — and including all of the states,

that are in Q̇, in the set Q̂ of states of M̂ .

Describe how transitions δ̂(q,#R) and transitions δ̂(q̇,⊔) can be defined, for all

states q ∈ Q, so that M̂ ’s representation of the configuration shown as C′ can be

reached by taking another two steps of M̂ .

Completing the Simulation

5. Now consider the following.

Claim. Let ω ∈ Σ⋆ and let Turing machines M and M̂ be as described above.

(a) If M accepts ω then M̂ moves its start state, for ω, to its representation of an ac-

cepting configuration of M , using a finite number of steps.

(b) If M rejects ω then M̂ moves from its start state, for ω, to its representation of a

rejecting configuration of M , using a finite number of steps.

(c) If M loops on ω then M̂ loops on ω too.

Describe — reasonably briefly — how you could prove this claim.

6. In a cleanup stage, M̂ should move from its representation of any accepting configura-

tion of M to the configuration represented by the string “ q̂accept”, and it should move from

its representation of any rejecting configuration of M to the configuration represented by

the string “ q̂reject”.

Describe — reasonably briefly — how M̂ can do this. How are the new symbols, “#L”

and #R, useful here?

For the rest of this exercise you may assume that if CA is an accepting configuration of M
then ϕ(CA) ⊢⋆ q̂accept, when using M̂ , and that if CR is a rejecting configuration of M then

ϕ(CR) ⊢
⋆ q̂reject, when using M̂ .

7. Briefly explain how it follows, from the above, that the sets of “recognizable languages”

and “decidable” languages would not be changed if they were defined using “Turing

machines that clean up after themselves” instead of standard Turing machines.

5


