
Lecture #12: Multi-Tape Turing Machines, Nondeterministic

Turing Machines, and the Church-Turing Thesis

What Will Happen During the Lecture

The goals of this lecture presentation include a discussion of Turing machines that compute

functions — which will be needed in this course, when “computability and decidability” is

being considered. It is also intended to help students to be more familiar with multi-tape Turing

machines, to see how Turing machine design can get a little bit easier when multi-tape Turing

machines are available, and, finally, to give a bit more evidence in support of the Church-

Turing thesis.

Review

The lecture presentation will begin with a brief review of the material in the preparatory video

and documents for this lecture — and students will have the chance to ask questions about

this.

Designing a Multi-Tape Turing Machine for Additional of Binary

Numbers

During the previous lecture (and in a supplemental document for it) Turing machines that

compute functions were introduced. Now that multi-tape Turing machines (that recognize

languages) have been introduced, multi-tape Turing machines that compute functions can

be introduced too — and a supplemental document with information about them is available.

Let Σbinary = {0,1}, and let fb inc : Σ⋆

binary → Σ⋆

binary such that the following properties are

satisfied for every string ω ∈ Σ⋆

binary:

• If ω is the unpadded binary representation of a non-negative integer n then fb inc(ω) is

the unpadded binary representation of n+ 1.

1



• On the other hand, if ω is not the unpadded binary representation of any non-negative

integer, then fb inc(ω) = λ, the empty string.

Let fb dec : Σ⋆

binary → Σ⋆

binary such that the following properties are satisfied for every string

ω ∈ Σ⋆

binary:

• If ω is the unpadded binary representation of a positive integer n, then fb dec(ω) is the

unpadded binary representation of n− 1.

• On the other hand, if ω is not the unpadded binary representation of any positive integer,

then fb dec(ω) = λ, the empty string.

In the supplemental document for the previous lecture about Turing machines that compute

functions, a Turing machine that computes the above function fb inc was presented, along

with a proof of its correctness. The document ended with an exercise; if the exercise was

completed then a Turing machine that computes the function fb dec was obtained, and proved

to be correct, as well.

Now let Σpair = {0,1,#} and consider a function fadd : Σ⋆

pair → Σ⋆

binary such that the following

properties are satisfied for every string ω ∈ Σ⋆

pair:

• If ω = µ# ν, where µ, ν ∈ Σ⋆

binary are the unpadded binary representations of a pair

of non-negative integers n and m, respectively, then fadd(ω) is the unpadded binary

representation of their sum, n+m.

• Otherwise fadd(ω) = λ, the empty string.

During the lecture presentation, a multi-tape Turing machine (that computes functions, and

that uses Turing machines computing fb inc and fb dec as components) will be designed, and a

proof that it corrects the function fadd will be sketched.

2


