Lecture #12: Multi-Tape Turing Machines, Nondeterministic
Turing Machines, and the Church-Turing Thesis

Lecture Presentation

Review of Preparatory Material



Designing a Multi-Tape Turing Machine for Additional of Binary
Numbers

During the previous lecture (and in a supplemental document for it) Turing machines that
compute functions were introduced. Now that multi-tape Turing machines (that recognize
languages) have been introduced, multi-tape Turing machines that compute functions can
be introduced too — and a supplemental document with information about them is available.

Let Xpinary = {0, 1}, and let fi inc : z:gmary — Egmary such that the following properties are

satisfied for every string w € X5,

* If w is the unpadded binary representation of a non-negative integer n then f inc(w) is
the unpadded binary representation of n + 1.

» On the other hand, if w is not the unpadded binary representation of any non-negative
integer, then fy inc(w) = A, the empty string.

Let fodec : Xpinary — binary SUCh that the following properties are satisfied for every string

« If w is the unpadded binary representation of a positive integer n, then fi gec(w) is the
unpadded binary representation of n — 1.

» On the other hand, if w is not the unpadded binary representation of any positive integer,
then fi dec(w) = A, the empty string.

In the supplemental document for the previous lecture about Turing machines that compute
functions, a Turing machine that computes the above function f,inc Was presented, along
with a proof of its correctness. The document ended with an exercise; if the exercise was
completed then a Turing machine that computes the function f, gec Was obtained, and proved
to be correct, as well.

Now let Xpqir = {0, 1,#} and consider a function fagq : X%, — X

pair binary SUCh that the following
properties are satisfied for every stringw € ¥

* o
pair*

* If w = pu#v, where p,v € zgmary are the unpadded binary representations of a pair

of non-negative integers n and m, respectively, then faqq(w) is the unpadded binary
representation of their sum, n + m.

+ Otherwise faqd(w) = A, the empty string.

Consider the algorithm shown on the following page.



On input w € Xpgir:

1. If w has the form u # v, where 1 and v are the unpadded binary representations
of non-negative integers then write 1 onto Tape #2 and write v onto Tape #3,
erasing Tape #1 and moving all tape heads to their leftmost positions. That is,
go from the configuration

Qowlqtq = oor#Hriqiaq

to a configuration
afiquiav
and continue to the next step. On the other hand, if w does not have this form

then erase the first tape, moving the tape head back to its leftmost position, and
halt — that is, go from the configuration qo w f qo # qo to the configuration

Ghalt  ghait § Ghalt

Let n and m be the non-negative integers whose representations are on Tapes #2
and #3, respectively.
2. while (n>0){
3. n:=n—1(updating Tape #2 to make this change)
4.  m:=m+ 1 (updating Tape #3 to make this change)
}
5. Erase the copy of “0” that is now on Tape #2 — so that the tape head for this

points to its leftmost cell — and go to state gnayt, in order to return the unpadded
binary representation of m.

Figure 1: An Algorithm to Compute the Function faqq

Suppose, in particular, that this is being implemented using a 3-tape Turing machine, with input
alphabet Zpgir, .whose'tape alphabet also includes “dotted” copies of the symbols in Xy, that
is, symbols 0, 1, and #.

Proving the Correctness of This Algorithm






Implementing Step 1

For a non-empty string ( = ajasas...a € zgmary (and for a1, g, ..., € Lbinary), let (ar
be the string in I'* obtained by marking the leftmost symbol — so that {3y = a1asas ... az.






How Does This Concern the “Church-Turing Thesis”?



