
Lecture #12: Multi-Tape Turing Machines, Nondeterministic

Turing Machines, and the Church-Turing Thesis

Lecture Presentation

Review of Preparatory Material

1



Designing a Multi-Tape Turing Machine for Additional of Binary

Numbers

During the previous lecture (and in a supplemental document for it) Turing machines that

compute functions were introduced. Now that multi-tape Turing machines (that recognize

languages) have been introduced, multi-tape Turing machines that compute functions can

be introduced too — and a supplemental document with information about them is available.

Let Σbinary = {0,1}, and let fb inc : Σ⋆

binary → Σ⋆

binary such that the following properties are

satisfied for every string ω ∈ Σ⋆

binary:

• If ω is the unpadded binary representation of a non-negative integer n then fb inc(ω) is

the unpadded binary representation of n+ 1.

• On the other hand, if ω is not the unpadded binary representation of any non-negative

integer, then fb inc(ω) = λ, the empty string.

Let fb dec : Σ⋆

binary → Σ⋆

binary such that the following properties are satisfied for every string

ω ∈ Σ⋆

binary:

• If ω is the unpadded binary representation of a positive integer n, then fb dec(ω) is the

unpadded binary representation of n− 1.

• On the other hand, if ω is not the unpadded binary representation of any positive integer,

then fb dec(ω) = λ, the empty string.

In the supplemental document for the previous lecture about Turing machines that compute

functions, a Turing machine that computes the above function fb inc was presented, along

with a proof of its correctness. The document ended with an exercise; if the exercise was

completed then a Turing machine that computes the function fb dec was obtained, and proved

to be correct, as well.

Now let Σpair = {0,1,#} and consider a function fadd : Σ⋆

pair → Σ⋆

binary such that the following

properties are satisfied for every string ω ∈ Σ⋆

pair:

• If ω = µ# ν, where µ, ν ∈ Σ⋆

binary are the unpadded binary representations of a pair

of non-negative integers n and m, respectively, then fadd(ω) is the unpadded binary

representation of their sum, n+m.

• Otherwise fadd(ω) = λ, the empty string.

Consider the algorithm shown on the following page.



On input ω ∈ Σpair:

1. If ω has the form µ# ν, where µ and ν are the unpadded binary representations

of non-negative integers then write µ onto Tape #2 and write ν onto Tape #3,

erasing Tape #1 and moving all tape heads to their leftmost positions. That is,

go from the configuration

q0 ω ♯ q0 ♯ q0 = q0 µ# ν ♯ q0 ♯ q0

to a configuration

q1 ♯ q1 µ ♯ q1 ν

and continue to the next step. On the other hand, if ω does not have this form

then erase the first tape, moving the tape head back to its leftmost position, and

halt — that is, go from the configuration q0 ω ♯ q0 ♯ q0 to the configuration

qhalt ♯ qhalt ♯ qhalt

Let n and m be the non-negative integers whose representations are on Tapes #2

and #3, respectively.

2. while (n > 0) {

3. n := n− 1 (updating Tape #2 to make this change)

4. m := m+ 1 (updating Tape #3 to make this change)

}

5. Erase the copy of “0” that is now on Tape #2 — so that the tape head for this

points to its leftmost cell — and go to state qhalt, in order to return the unpadded

binary representation of m.

Figure 1: An Algorithm to Compute the Function fadd

Suppose, in particular, that this is being implemented using a 3-tape Turing machine, with input

alphabet Σpair, whose tape alphabet also includes “dotted” copies of the symbols in Σpair, that

is, symbols 0̇, 1̇, and #̇.

Proving the Correctness of This Algorithm





Implementing Step 1

For a non-empty string ζ = α1α2α3 . . . αk ∈ Σ⋆

binary (and for α1, α2, . . . , αk ∈ Σbinary), let ζM
be the string in Γ⋆ obtained by marking the leftmost symbol — so that ζM = α̇1α2α3 . . . αk.





How Does This Concern the “Church-Turing Thesis”?


