Lecture #12: Multi-Tape Turing Machines, Nondeterministic
Turing Machines, and the Church-Turing Thesis

Nondeterministic Turing Machines

Lecture #12 introduced a significant variant of Turing machine — a multi-tape Turing machine
— that considerably simplifies the job of showing that languages are Turing-recognizable or
Turing-decidable, or that functions are Turing-computable. Simulations were described that
could be used to show that the sets of Turing-recognizable and Turing-decidable languages,
and Turing-computable functions, would not be changed if these were defined using multi-tape
Turing machines instead of using standard (one-tape) Turing machines.

This document — which is not required reading — introduces yet another variant of a Turing
machine that accepts, rejects or loops on strings (so that it recognizes a language, and might
also decide one), namely, a nondeterministic Turing machine. Simulations are sketched
that can be used to prove that the sets of Turing-recognizable and Turing-decidable languages
are (once again) unchanged if nondeterministic Turing machines are used instead of standard
“deterministic” Turing machines when these are defined.

Definitions

A nondeterministic Turing machine is the same as a regular Turing machine except that there
can be zero, one, or many moves that might be possible at any time — so that the transition
function is now a total function

§:Q xI' = P(Q xT x{L,R}).
such that §(qaccept; 0) = (greject, o) = () for every string o € T' (to ensure that gaccept and ghart

are both “halting” states).

This is (essentially) the same as the change made to the definition of a DFA in order to define
an NFA.

The initial configuration of a Turing machine, for an input string w € >*, is the same as for a
standard (deterministic) Turing machine.

A computation of a nondeterministic Turing machine M on an input string w € >* can be
represented as a tree:

» The start configuration for w is at the root.

» Each path down the tree shows one of the possible sequence of configurations that the
machine can have when processing w.

A nondeterministic Turing machine M ...

» accepts w if at least one accepting configuration appears on the computation tree
for w.

* rejects w if the computation tree for w is finite and there is no accepting configuration
on it.

» loops on w otherwise — that is, when the computation tree is infinite and does not
include any accepting configuration.

The definition of a Turing machine’s recognizing a language (which depends on the definitions

LLIT

of “accepting”, “rejecting” and “looping on” a string) is (otherwise) unchanged. However, the
definition of a nondeterministic Turing machine’s “deciding” a language is somewhat different:
Let us say that a nondeterministic Turing machine M is a decider if all branches of the com-
putation tree for M and an input w € >* are finite — so that the entire computation tree for w is
finite — for every input string w € 3*. We will say that a nondeterministic Turing machine M
decides' a language L C * if and only if

* M is a decider, and
+ L is the language of M — that is, the set of strings in >* that M accepts.

An Example

Suppose ¥ = {a, b} and let
L ={ww|weX}
Then a nondeterministic Turing machine that recognizes this language, using a tape alphabet
F=Xu{uUpu{#,X} ={a,b,# X 1}

is as follows.

'One could also define “deciding” quite differently: One could simply say that a nondeterministic Turing machine
“decides” a language L C X" if it accepts every string in L and rejects every string in X* \ L. This definition would
be different — some Turing machines would “decide” languages according to this definition, when they would not
“decide” languages under the definition given first. However, the set of “Turing-decidable” languages” would still not
be changed, if this other definition of “decision” was used instead.

Oninput p € ¥*:

1. If the symbol that is visible on the tape is a then the machine should replace this with #,
moving right, and changing to state ¢,.

If the symbol that is visible on the tape is b then the machine should replace this with #,
moving right, and then changing to state gp.

If the symbol that is visible is LI then the machine should move left without replacing this,
and accept.

Thus

6(q0,2) = {(qa,#,R)}, 9(q0,b) = {(a,#,R)}, and 6(qo,) = {(qaccept; L}, L)}

A state diagram for this part of the machine is as follows.

2. If the machine is in state ¢, (so that the input string began with an a) and a b is visible
then the machine should sweep past it to the right without changing it and remain in
state ¢, (so that this step will be repeated).

If the machine is in state ¢, and U is visible then the machine should sweep past it to the
right, without changing it, and reject.
On the other hand, if the machine is in state ¢, and an a is visible then the machine can
+ either guess that this is the first symbol in the second half of the string — replacing
this a with an X, moving left, and changing to state ¢,

» or guess that this is not the first symbol in the second half — leaving this a un-
changed, moving right past it, and remaining in state ¢,.

3. Similarly, if the machine is in state ¢; (so that the input string began with a b) and an a is
visible then the machine should sweep past it to the right without changing it and remain
in state ¢, (so that this step will be repeated).

If the machine is in state ¢, and LI is visible then the machine should sweep past it to the
right, without changing it, and reject.

On the other hand, if the machine is in state g, and a b is visible then the machine can
* either guess that this is the first symbol in the second half of the string — replacing
this b with an X, moving left, and changing to state ¢,

» or guess that this is not the first symbol in the second half — leaving this b un-
changed, moving right past it, and remaining in state ¢.

. When the machine is in state ¢, it should sweep left over all symbols except #, without
replacing them, moving left. When # is seen then the machine should move right past i,
without replacing it, and change to state ¢;.

The state diagram for the part of the machine that has now been described is as follows.

a/a,L
b/b,L

a/a,R @ X/X, L
b/b,R oL
" Ty

b/X,L
a/a,R
b/b,R

Note: 6(q,,2a) = {(¢4,2a,R), (qr,X,L)}.
. Finally, the algorithm should repeatedly do the following.

(a) Sweep right over any X’s without replacing them. If a Ll is seen before an a or b
then accept. Otherwise replace the leftmost remaining a or b with X, using the finite
control to remember which of these was replaced;

(b) Sweep right over remaining a’s and b’s, without replacing them, until an X is seen.

(c) Sweep right over remaining X’s without replacing them until either an a or b is seen
— reject if Ll is seen instead. If an a or b is seen and this is different from the symbol
that got replaced then reject. Otherwise, replace it with X and move left.

(d) Continue moving left past symbols without replacing them, until a # is seen. Move
back to the right and return to step 5(a).

The state diagram for this part of the machine is as follows.

a/a,R
b/b,R X/X,R
() ()
X/X,R a/X,L
a./X R a./a.L

T #/#R b/b L
X/X L

u/u, L b/X,R /U, L
b/X,L
9/

a/a,R X/X,R
b/b,R

The computation tree for the string abab begins as follows:

q,abab

#q_bab

#bq_ab

7N

#q,bXb #baq b
The right branch of this computation tree continues as follows:

#bag,b - #babq,
l_ #bab |_| qreject.

On the other hand, the left branch of this computation tree continues as follows.

#qbXb F g #bXb - #¢1bXb - #Xr,Xb
F #XXspb - #XtXX F #XXX
F t#XXX - #¢: XXX - #Xq1 XX
F #XXq1 X - #XXXq1 - #XXqacceptX-
This this branch of the computation tree does include an accepting configuration, so M ac-
cepts the input string abab.

It can be shown — with a bit of work — that this nondeterministic Turing machine is a decider,
and that it decides the above language L.

One Simulation

Claim 1. Let L. C X* (for an alphabet).
(a) If L is Turing-recognizable then there exists a nondeterministic Turing machine whose
language is L.

(b) If L is Turing-decidable then there exists a nondeterministic Turing machine that decides L.

Proof. Let
M = (Q7 2,1, 9, qo, Gaccept> Qreject)

be a deterministic Turing machine M that recognizes a language L C X*. It suffices to note
that if we set

M = (Qa 2,109, qo, Gaccept> Qreject)
to be a nondeterministic Turing machine with the same set () of states, tape alphabet I', and
with the same start state, accept state and reject state, then it suffices to define § by setting

3(g,0) = {3(g,0)}
for each state ¢ € @ \ {qaccept; ¢reject } @nd every symbol o € T', and to set

ZS\(qaccep'c» o) = ZS\(qreject» o) = 0
for every symbol o € I'.. The state diagrams for M and M will look exactly the same. It also
easy proved, then (by induction on |w|) that

(go,w) = {6 (g0, w)}

for every string w € >*. Since M and M have the same start state, accept state, and reject

—

state, it follows from this that L(M) = L(M) = L. Furthermore, M decides L if M does —
as needed to establish the claim. O

Another Simulation

Claim 2. Let . C X* (for an alphabet).

(a) If there exists a nondeterministic Turing machine whose language is L then L is Turing-
recognizable.

(b) If there exists a nondeterministic Turing machine that decides L then L is Turing-decidable.

Sketch of Proof. Let L C ¥*, for an alphabet >*. Suppose that there exists a nondeterministic
Turing machine

M = (Q> .19, qo, Gaccept> Qreject)

whose language is L. In order to prove part (a) of the claim it is necessary, and sufficient, to
describe a 2-tape (deterministic) Turing machine

—

M = (Qa ¥, I, Q\Oa (/]\accepty areject)y

whose language is L, as well.

A simulation will be given to show such a Turing machine,]\//.7, exists: M will simulate all pos-
sible executions of M on an input string w € >* by performing a search over M’s computation
tree on this input string.

Representation of Information: In order to do this, M will need to represent configurations
of M.

M’s tape alphabet, T, will therefore include

+ All the symbols in M'’s tape alphabet, T';
« all the symbols in M’s set of states — and it will be assumed that Q N T = (;
« one more symbol, #, that is not in either I" or Q.

M will keep the following information on its tapes.

» Tape #1: This initially stores the input string w € >*. During this simulation it will store
a sequence of configurations of M, separated by (and ending with) & — and with this
tape starting with two &’s, so that the left end of the tape can be detected.

» Tape #2: This is a “work tape” that will be used to update tape #1.

How Not To Do This: One way to try to simulate M’s behaviour is to perform a depth-first
search — simulating computations down branches of the computation tree until each ends.

Unfortunately this will not always work if M is not a “decider” — because it is possible that an
infinite branch might get searched — and M will end up “looping on w” — even though there

is another finite branch in M’s computation tree that ends with an accepting configuration —
so that M accepts w, instead.

How To Do This: Use breadth-first search instead: After t stages of this simulation all the
configurations reachable from the start configuration by making ¢ moves of M will be shown
on Tape #1. Since there are only finitely many configurations that are reachable after ¢ moves
of M, for any non-negative integer ¢, this guarantees that an accepting configuration will be
discovered, so that the input string will be accepted, whenever it belongs to the language of M.

So — while the simulation process — Tape #1 will store the sequence of all configurations that
are at level t in the computation tree for the input string, for some non-negative integer t.

Initialization: Since M'’s Tape #1 should store the initial configuration when the simulation of
the first step is to begin, and since it initially stores the input string, it (only) needs to add three
symbols — “déq,” to the beginning of the non-blank string stored on the tape, and to add one
symbol “&” to the end of it.

The initialization phase should, therefore, write the above three symbols on the leftmost cells
of Tape #1 and continue to sweep right, as long as non-blank symbols are visible, shifting the
non-blank (initial) contents of the tape three symbols to the right — using the finite control to
remember the last three symbols seen (so that they can be written back onto the tape when
needed) — adding one more non-blank symbol, “#”, at the end. The tape head should then
sweep back to the leftmost cell of the tape without changing the contents of the tape. Since the
only place on the tape where two copies of “#” are next to each other is at the first two cells of
the tape, the leftmost cell of the tape is easily identified.

The initialization phase should end with a change of state, so that M's finite control also stores
the information that M is in its start state, qo, when its first step is about to begin.

Simulation of a Step of M : The simulation of a step should begin with the contents of M’s
Tape #1 being copied onto Tape #2, erasing all but the first two symbols, “d&”, that are on the
first tape — with both tape heads moved back to the third cell on each tape.

Each of the configurations on Tape #2 should now be used to produce zero or more configu-
rations that will be added onto the end of Tape #1. This process will (almost certainly) begin
with a sweep to right over the representation of the configuration (which is now on Tape #2) to
determine the state, ¢ € @ that it includes, and the symbol, o € I, that would be visible on the
tape at this point — which can be stored using M'’s finite control. M’s tape head, on Tape #2,
could then be moved back to the beginning of the representation of this configuration.

Recall that we are simulating a single fixed nondeterministic Turing machine M/ — so that M's
possible moves are fixed, and can be used to define M'’s *finite control” (set of states and tran-
sition function). Thus M can include a fixed “submachine” for each state ¢ € Q\ {gaccept: Freject }
and for each symbol o € I" whose transition §(q, o) should be applied. Furthermore, the sub-
machine for ¢ and o will include a fixed (and finite) number of simpler submachines — one for
each 3-tuple (r,7, D) (forr € Q, 7 € T'and D € {L,R}) that is in the set 6(q, o).

Exercise: Figure out what these submachines will do! Consider each of the following cases.
(@) d(q,0) includes a 3-tuple (r,7,L) forr € Q and 7 € T.
(b) 4(q,0) includes a 3-tuple (r,7,R) forr € Qand 7 € T.

Note that if the transition (¢, o) is now being used then |5(q, o)| configurations will be added
to the end of Tape #1 to replace the configuration on Tape #2 that is now being processed.

During this process, rejecting configurations should simply be erased from Tape #2's tape as
they are discovered.

If an accepting configuration is ever discovered then M should accept.

On the other hand, if this has not happened and — at the end of a stage — Tape #1’s non-blank
portion only stores

LT

then M should reject — because the computation tree was finite, has now been completely
searched, and it did not include an accepting configuration.

Otherwise, after all the transitions on Tape #2 have been processed, this tape should be erased
(and the tape head should be moved back to the left). M’ should change state to store M'’s
current state, so that the simulation of the next step can begin.

Now, since M is a fixed nondeterministic Turing machine there exists a positive constant ¢
(depending only on M) such that
0(g,0)| < ¢

for every state ¢ € Q and symbol o € I'. This can be used to prove the following (Parts (a)
and (b) can be established by induction on ¢; part (c) is a consequence of parts (a) and (b).)

Claim: Lett > 0. Then, after ¢ stages of the simulation of M, the following
properties are satisfied.

(a) The length of each substring representing a configuration of M, on Tape #1,
has length at most linear in max(n, t) if the input string w € ¥* has length n.

(b) The number of configurations represented on Tape #1 is at most c’.
(c) The length of the non-blank portion of Tape #1 is at most linear in max(n, t) x c'.

This claim can then be used to establish the following one.

Claim: The number of steps used by M to carry out the " stage of the simulation
is at most linear in max(n,t) x c'.

How To Prove This: After considering the simulation in a bit more detail you should be able
to confirm that the number of steps used by M to generate the non-blank portion of Tape #1
is only linear in the length of the non-blank portion of the tape that has been generated. The
claim is a reasonably straightforward consequence of this.

Now let w € ¥* such that M accepts w. Then the computation tree for w includes an accepting
configuration at some level t. It follows by the above that this configuration will be discovered
(if M has not already been accepted before this) during the ™" simulation of a “step” of M, and
that M will also accept w.

Suppose that M rejects w instead: Then the computation tree for w is finite (so that it as some
finite depth, t) and does not include any accepting configuration. After the simulation of ¢ + 1
“steps” of M — which will require only a finite number of moves of M/, by the above claims —
it will be discovered that M’s Tape #1 does not store any configurations at all — and M will
also reject w at this point.

Finally, suppose that M loops on w — so that the computation tree for w is infinite and does
not include any accepting configurations. Then M will never accept w (since it must discover
an accepting configuration in order to do so) and its execution on w will never halt, since M'’s
configuration tree has infinitely many levels (and M can only reject w after discovering that its
computation tree has finite depth). Thus M loops on w too.

—

It follows by the above that L(M) = L(M) = L, as needed to establish part (a) of the claim.
Furthermore, if M decides L then M decides L too, as needed to establish part (b). O

Nondeterministic Multi-Tape Turing Machines

It is possible to define nondeterministic k-tape Turing machines too. It should (probably) not
be hard for you to imagine how.

The simulation of a k-tape Turing machine by a regular one can be modified — in a reasonably
minor way — to produce a simulation of a k-tape nondeterministic Turing machine by a one-
tape nondeterministic Turing machine.

Claim 2 can then be applied, to establish that the set of Turing-recognizable languages, and
Turing-decidable languages, are not changed if we use nondeterministic multi-tape Turing ma-
chines to define these sets.

10

