
Lecture #12: Multi-Tape Turing Machines, Nondeterministic

Turing Machines, and the Church-Turing Thesis

The Church-Turing Thesis

The Early, Early Days

While the ideas of “computability” and “algorithms” certainly existed before the twentieth cen-

tury, they had not been made precise enough for people to be confident that they were talking

or writing about the same things, when they were using these terms. Work in the 1930’s

included (at least) three significant efforts to formalize these:

• In 1933, Kurt Gödel and Jacques Herbrand formalized the definition of general recur-

sive functions — the smallest set of functions with (arbitrarily many) non-negative in-

tegers as inputs, computing natural numbers that include a set of “base functions” and

that are closed under a set of operations on functions (so that the definition of this set of

functions has the same general structure as the definitions of “regular expressions over

an alphabet”, as given in this course, even though the details are quite different).

“General Recursive Functions” are still discussed today. Indeed, they are often featured

more prominently in (more specialized) introductions to computability than either of the

other formalizations being mentioned here.

• In 1936, Alonzo Church introduced another method of defining (some) functions —

again, with (arbitrarily many) non-negative integers as inputs, and returning natural num-

bers as outputs, called the λ-calculus.

The λ-calculus is also still used today. Indeed, the development and use of functional

programming languages and functional programming makes considerable use of

this.

• In 1937 — but independently of Church’s work — Alan Turing introduced a version of the

kind of Turing machine that is being studied in this course.

1



It was not immediately clear how these formalisms were related. Indeed, they do not even

work with the same types of objects — so that it is necessary to describe a way to “encode”

natural numbers as strings over an alphabet, before asking a function that is general recursive,

or that can be specified using the λ-calculus. It is also necessary to “encode” strings over an

alphabet as natural numbers in order to ask whether a function, that can be computed using a

Turing machine, is also general recursive or can be specified using the λ-calculus.

There was a period of time when it was not known the formalisms were equivalent or even

related, in any useful sense — and each was considered to be the “right” formalism by various

people. In time, though, it was proved that — up to “encodings” — all three of the above

formalisms are equivalent. So are several others that were proposed at approximately that

time and — for one reason or another — are still useful, or interesting, today.

What is the “Church-Turing Thesis”?

The Church-Turing Thesis is a widely accepted belief that the researchers who introduced

these formalisms “got it right”. One way to state this is that “any function of the natural numbers

can be calculate by an effective method if and only if if is computable by a Turing machine”.

Evidence in support of this belief includes the body of the results, establishing equivalence of

proposed models of computation, like the ones mentioned above.

More Models

As time passed, and computers were developed, additional models — including models that

more closely resembled components of computers in use today — were proposed. One model

(or, perhaps, “family of models”) was the random access machine.

• Instead of a set Q of states, a random access machine generally includes a program —

consisting of a sequence of instructions written using an extremely simple programming

language.

• Instead of one or more storage tapes, a random access machine has an infinite se-

quence of registers r0, r1, r2, . . . that can each store a non-negative integer. A compu-

tation begins with the input(s) stored in as many initial registers as are needed, with the

values of all other registers set to zero.

• The programming language’s instructions allow the values of specified registers to be

incremented or decremented. Values can be copied from one register. There are also

simple instructions that provide simple tests and branching. Furthermore, the value of

2



a register can be used as the address of another register whose information can be

accessed — providing a form of indirect addressing.

Several variants of a “random access machine”, with somewhat different statements in the

programming language, have been proposed in computing research — additional details can

be found in the Wikipedia page for this topic [2]. For a sketch of a proof that a random access

machine can be simulated by a Turing machine, See Section 7.6 of the text of Hopcroft and

Ullman [3].

For a variety of other abstract models of computation that have been introduced (up until

the end of the twentieth century) — and sketches of additional simulations that support the

“Church-Turing thesis”, see the text of Savage [6]. Still more information like this — and quite a

bit more of the history (and development) of this thesis — can be found in the text of Robic̆ [5].

Additional Details

For additional details — including a brief overview of more recent developments, see the

Wikipedia page for the “Church-Turing thesis” [1]. For even more information — including evi-

dence that there has been some dispute over what the “Church-Turing thesis” should be taken

to mean about the computability — see the collection of Olszewski, Wolenski and Janusz [4].

References

[1] Wikipedia Foundation. Church-Turing Thesis. https://en.wikipedia.org/wiki/

Church-Turing_thesis. Accessed on October 9, 2025.

[2] Wikipedia Foundation. Random Access Machine. https://en.wikipedia.org/wiki/

Random-access_machine. Accessed on October 9, 2025.

[3] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, first edition, 1979.

[4] Adam Olszewski, Jan Wolenski, and Robert Janusz, editors. Church’s Thesis After 70

Years. Ontos Verlag, 2007.

[5] Borut Robic̆. The Foundations of Computability Theory. Springer-Verlag, second edition,

2020.

[6] John E. Savage. Models of Computation: Exploring the Power of Computing. Addison-

Wesley, 1998.

3


