Lecture #12: Multi-Tape Turing Machines, Nondeterministic
Turing Machines, and the Church-Turing Thesis

The Church-Turing Thesis

The Early, Early Days

While the ideas of “computability” and “algorithms” certainly existed before the twentieth cen-
tury, they had not been made precise enough for people to be confident that they were talking
or writing about the same things, when they were using these terms. Work in the 1930’s
included (at least) three significant efforts to formalize these:

+ In 1933, Kurt Gddel and Jacques Herbrand formalized the definition of general recur-
sive functions — the smallest set of functions with (arbitrarily many) non-negative in-
tegers as inputs, computing natural numbers that include a set of “base functions” and
that are closed under a set of operations on functions (so that the definition of this set of
functions has the same general structure as the definitions of “regular expressions over
an alphabet”, as given in this course, even though the details are quite different).

“General Recursive Functions” are still discussed today. Indeed, they are often featured
more prominently in (more specialized) introductions to computability than either of the
other formalizations being mentioned here.

* In 1936, Alonzo Church introduced another method of defining (some) functions —
again, with (arbitrarily many) non-negative integers as inputs, and returning natural num-
bers as outputs, called the A-calculus.

The A-calculus is also still used today. Indeed, the development and use of functional
programming languages and functional programming makes considerable use of
this.

* In 1937 — but independently of Church’s work — Alan Turing introduced a version of the
kind of Turing machine that is being studied in this course.



It was not immediately clear how these formalisms were related. Indeed, they do not even
work with the same types of objects — so that it is necessary to describe a way to “encode”
natural numbers as strings over an alphabet, before asking a function that is general recursive,
or that can be specified using the A-calculus. It is also necessary to “encode” strings over an
alphabet as natural numbers in order to ask whether a function, that can be computed using a
Turing machine, is also general recursive or can be specified using the A-calculus.

There was a period of time when it was not known the formalisms were equivalent or even
related, in any useful sense — and each was considered to be the “right” formalism by various
people. In time, though, it was proved that — up to “encodings” — all three of the above
formalisms are equivalent. So are several others that were proposed at approximately that
time and — for one reason or another — are still useful, or interesting, today.

What is the “Church-Turing Thesis”?

The Church-Turing Thesis is a widely accepted belief that the researchers who introduced
these formalisms “got it right”. One way to state this is that “any function of the natural numbers
can be calculate by an effective method if and only if if is computable by a Turing machine”.

Evidence in support of this belief includes the body of the results, establishing equivalence of
proposed models of computation, like the ones mentioned above.

More Models

As time passed, and computers were developed, additional models — including models that
more closely resembled components of computers in use today — were proposed. One model
(or, perhaps, “family of models”) was the random access machine.

+ Instead of a set ) of stafes, a random access machine generally includes a program —
consisting of a sequence of instructions written using an extremely simple programming
language.

* Instead of one or more storage tapes, a random access machine has an infinite se-
quence of registers ry, 71,72, ... that can each store a non-negative integer. A compu-
tation begins with the input(s) stored in as many initial registers as are needed, with the
values of all other registers set to zero.

» The programming language’s instructions allow the values of specified registers to be
incremented or decremented. Values can be copied from one register. There are also
simple instructions that provide simple tests and branching. Furthermore, the value of



a register can be used as the address of another register whose information can be
accessed — providing a form of indirect addressing.

Several variants of a “random access machine”, with somewhat different statements in the
programming language, have been proposed in computing research — additional details can
be found in the Wikipedia page for this topic [2]. For a sketch of a proof that a random access
machine can be simulated by a Turing machine, See Section 7.6 of the text of Hopcroft and
Ullman [3].

For a variety of other abstract models of computation that have been introduced (up until
the end of the twentieth century) — and sketches of additional simulations that support the
“Church-Turing thesis”, see the text of Savage [6]. Still more information like this — and quite a
bit more of the history (and development) of this thesis — can be found in the text of Robic [5].

Additional Details

For additional details — including a brief overview of more recent developments, see the
Wikipedia page for the “Church-Turing thesis” [1]. For even more information — including evi-
dence that there has been some dispute over what the “Church-Turing thesis” should be taken
to mean about the computability — see the collection of Olszewski, Wolenski and Janusz [4].

References
[1] Wikipedia Foundation. Church-Turing Thesis. https://en.wikipedia.org/wiki/
Church-Turing_thesis. Accessed on October 9, 2025.

[2] Wikipedia Foundation. Random Access Machine. https://en.wikipedia.org/wiki/
Random-access_machine. Accessed on October 9, 2025.

[3] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, first edition, 1979.

[4] Adam Olszewski, Jan Wolenski, and Robert Janusz, editors. Church’s Thesis After 70
Years. Ontos Verlag, 2007.

[5] Borut Robi¢. The Foundations of Computability Theory. Springer-Verlag, second edition,
2020.

[6] John E. Savage. Models of Computation: Exploring the Power of Computing. Addison-
Wesley, 1998.



