Lecture #11: Simulations and Simple Turing Machine Variants Key Concepts

Recall that a *simulation* is something that can be presented to relate the power of two models of computation. In order to show that the machines described by a *second* model of computation are (in some sense) at least as powerful or efficient as the machines described by a *first* model of computation, we generally do the following:

- (a) Consider an arbitrary machine M, of the type described by the *first* model of computation.
- (b) Use M to define another machine \widehat{M} , of the type described by the \pmb{second} model of computation.
- (c) Prove that \widehat{M} solves the same problem as M.

Step (b) can be expanded as follows:

• Begin by describing — as clearly and completely as you can — how a configuration of the first machine, M can be represented when a machine, \widehat{M} , of the second type is being used.

When \widehat{M} is a kind of Turing machine this will, generally, including describing how many tapes \widehat{M} has, and what they are used for. It might also include describing \widehat{M} 's tape alphabet, $\widehat{\Gamma}$.

This will, ideally, make it significantly easier, to describe the following:

• Initialization: Let Σ be the input alphabet for M — so that it must be the input alphabet for \widehat{M} , as well. Describe how \widehat{M} begins with its initial configuration for an input string $\omega \in \Sigma^{\star}$ and moves to a representation of M's initial configuration for the same input string.

Step-by-Step Simulation:

For configurations \mathcal{C}_1 and \mathcal{C}_2 of M, such that M moves from configuration \mathcal{C}_1 to configuration \mathcal{C}_2 using a single step, describe how \widehat{M} moves from a representation of \mathcal{C}_1 to a representation of \mathcal{C}_2 .

· Cleanup:

Describe anything more that \mathcal{M} must do, to end its computation, after simulating M's final step.

Note: For Turing machines that recognize (or decide) languages, there might not be anything, here, to describe.

If \widehat{M} is a Turing machine then it is possible that \widehat{M} s's transition function, $\widehat{\delta}$, has been described in detail once these steps have been completed. Alternatively, if the simulation is more complex, then enough information has been given so that it *could* be completed, if you had time.

If it is not obvious then a **proof of correctness** of the simulation should be given. When M and \widehat{M} are types of Turing machines, that each have an input alphabet Σ , then this should imply the following: For every string $\omega \in \Sigma^\star$ and for every non-negative integer t, the following property is satisfied: If the execution of M on input ω uses at least t steps, and M is in configuration $\mathcal C$ after the first t steps of its execution on input ω , then \widehat{M} 's execution on input ω includes a simulation of at least t steps of M and — after the simulation of t steps of t is in a configuration that gives a representation of t.