Lecture #11: Simulations and Simple
Turing Machine Variants

Turing Machines That Compute Functions

Consider the problem of computing a (partial or total) function
f:X] =23

for alphabets 3; and X5, using a Turing machine that is similar to a Turing machine that rec-
ognizes a language.

This problem will be needed shortly in this course — when we consider ways to prove that
languages are undecidable (or even unrecognizable — so that students should be familiar
with the definitions of Turing machines given in Section 1, and of computable functions, given
in Section 2.

The rest of this document can be skipped unless students find this subject to be interesting,
wish to see examples of this kind of Turing machine or see how things can be proved about
these machines — as in Sections 3 — 5.

1 Definition

A one-tape Turing machine that computes a partial or total function
fiX] = 53,
for alphabets ¥; and Yo, can be modelled as a 7-tuple
M = (Q,%1,%2,1',6,q0, ghar)

where @, X1, X9, I', 6, qo, and gnat are as follows.

* () is afinite, and non-empty, set of states. It is used in the same way as the set of states
does, for Turing machines that recognize languages.

« 3, is an alphabet (such that ¥; N @ = 0 and such that LI ¢), called the input
alphabet. It plays the same role as the “input alphabet” does for Turing machines that
recognize languages.

« Y5 is another (possibly different) alphabet (such that 35 N Q = () and such that Ll ¢ 3),
called the output alphabet.

« ' is an alphabet, called the alphabet, which is used in the same was as the tape alpha-
bet is, for a Turing machine that recognizes languages. >; CI', 3 CT'and U € ' —
but I might also include finite may other symbols that are not in ¥; U X9 U {U}.

* qo is a state in @), called the start state. This plays the same role, for Turing machines
that compute functions as it does for Turing machines that recognize languages.

* gnait is the halt state. This plays a role that is similar to role that the accepting state,
“gaccept” @nd the rejecting state, “greject”, dO, for Turing machines that recognize languages
(see the description of the transition function, J, to see how).

* Like the transition function for Turing machines, the transition function, 4, is a partial
function
0:QxT —QxT x{L,R}.

In particular, (¢, o) should be defined for every state ¢ € @ such that ¢ # gnar, and for
every symbol o € I' — but §(gnart, o) should not be defined, for any symbol o € T'.

Configurations of a Turing machine that computes a function are described, as strings over the
alphabet Q U T, just as they are for Turing machines that recognize languages. The transition
function is used to update the Turing machine’s tape in the same way for both kinds of Turing
machines as well.

The initial configuration for an input string, w € X7, is the same as it is for Turing machines
that recognize languages: The Turing machine is in its start state, the input string is written
on the leftmost cells of the tape, with copies of “LI” on all cells to the right, and the tape head
points to the leftmost cell of the tape — so that is the configuration represented by the string
“gow”.

If this Turing computes a partial function f : X7 — 33 then the following properties are satis-
fied, for every string w € X7:

« If fis defined at w then the Turing machine’s execution on input w halts, with f(w) written
on the leftmost cells of the tape, with copies of “LI” to the right, and with the tape head
pointing to the leftmost cell. Thus the Turing machine is in the configuration represented
by the string “gnar f (w)” when the computation ends.

* If f is undefined at w then the Turing machine loops on w.

2 Computable Functions

Let us say that a function f : X7 — X3 is computable if there exists a standard Turing
machine M that computes functions, as defined above, with input alphabet ¥; and output
alphabet Y5, such that M computes f.

3 ASimple Example: Incrementing the Value of a Number in Unary
Notation

3.1 The Problem To Be Solved

Suppose that Yynary = {1}. A string 1" € X, can be used as the unary representation
of n, for every non-negative integer n. Let

Bty *
fufinc : Eunary - Eunary

be the function mapping the unary representation of n to the unary representation of n + 1 —
so that
fufinc(ln) = 1n+1 (1)

— for every non-negative integer n.

3.2 How Could This Problem Be Solved Using a Turing Machine?

Suppose we wish to design a Turing machine that computes functions

M = (Q, Eunary, Eunary, I', 9, qo, Qhalt)

that computes the above function f, inc.

Since fyinc is as shown at line (1), above, all that M must do is add another copy of “1” to the
end of its input string. If “LU” is visible immediately (so that the input is the empty string then
M should write a copy of “1” without moving its tape head. Otherwise — marking the leftmost
symbol on the tape, so that it can be found again, M’s tape head should be swept right until
the leftmost copy of “L” is found. This should be replace by a copy of “1” as the head begins
to move left. The tape head should continue to move left until the marked leftmost symbol
is found. This should be replaced by a copy of “1”, without moving the top head — and the
computation can end at this point.

There are multiple ways to mark the leftmost cell of the tape. One way that that does not
always work — but that works for this problem — is to replace the symbol with “LI”.

3.3 A Turing Machine That Computes This Function

Using this approach one can set

Q = {QO>Q17 q2, Qhalt}v = Eunary U {I—l} = {17 I—'}»

and to set § is shown by the following figure — where the halting state is shown as “qg” instead
of “ghait”, to keep the picture simple:

1/1,R 1/1,L
1/U,R U/1,L
s (2 (02 o)
U/1,L /1, L

3.4 Proof of Correctness

Now note that if M is as described, then
0 I~ gnaitl (since &(qo, L) = (ghait; 1,L1))
— as required when the input is the empty string, since
fuine(\) = fuine(1%) = 11 = 1.

Note, as well, that

(]01 FUu q1 (Since 5((]07 1) = (qlv |—|>R'))
Fgo U1 (since 6(q1,U) = (g2,1,L))
F ghait 11 (since 6(g2,) = (gnatt, 1,L))

— as required when the input is the string “1”, since
fU,inC(l) = fufinc(ll) =12 =11.

Now consider an execution of the algorithm on an input 1™ for an integer n such that n > 2.
This begins as follows;

Gol1"F Lg 17! (since 6(qo, 1) = (q1,,R)).

Ideally, the following should not be difficult — the required proof resembles one included in the
lecture presentation for Lecture #10.

Exercise: Prove, by induction on ¢, that — for every integer ¢ suchthat 0 <i: <n —2—

Ug 1" P utfgq 1t

It now follows that
q0 1"+ I—lln_l q1 (Since 5((]07 1) = (qlv |—|>R'))

F* 12 gy 12 (since 6(q1,U) = (go,1,L).)

Once again, the following can be completed by proving a proof resembling one from the lecture
presentation for Lecture #10.

Exercise: Prove, by induction on j that — for every integer j suchthat0 < j <n —2—

L1 2 g 12 B L2 gy 1912,

Thus
go 1" F* U1 2 gy 12 (using the derivation as given, so far)
F Ugo 1™ (by the above result, when j = n — 2)
Fg, LI1™ (since 6(g2,1) = (g2, 1,L))
F ghar 1" (since 6(q2,) = (ghar, 1,L).)

That is, when n > 2,

qo 1" F* ghan 1"

— as required when the input string is 1™ for n > 2.

Examining all the above derivations, one can see that this Turing machine computes the func-
tion fu inc, @s desired.

4 A More Complicated Example: Incrementing the Value of a Num-
ber in Binary Notation

41 The Problem To Be Solved

Now suppose that Xpinary = {0, 1}. A string

W= QpQf_1...X20010Q € Eginary (2)

5

(with length k& + 1) is the unpadded binary representation of a non-negative integer if w # A
(sothat £ > 0) and either Kk = 0 or kK > 1 and o = 1 — so that this string is not “padded” with
leading copies of 0. In particular, if w is as shown at line (2), which satisfies this condition, is
the unpadded binary representation of n, for a non-negative integer n, if

k
n= Z o - 20 (3)
=0

Let
AR wts *
fbﬁinc : Ebinary - Ebinary

which is defined as follows:

« If w is the unpadded binary representation of a non-negative integer n then fi inc(w) is
the unpadded binary representation of n + 1.

« If w is not the unpadded binary representation of any non-negative integer, at all, then
fb_inc(w) =\

Suppose we wish to design a Turing machine that computes functions

M = (Qv Ebinarya Ebinarya ', 9, qo, Qhalt)

that computes the above function fj inc-

4.2 An Algorithm for This Computation — and Proof of Its Correctness

To begin, consider the algorithm shown in Figure 1 on page 7.

Consider an execution of this algorithm on an input string w € X, such that w is the
unpadded binary representation of a natural number n.

* If n = 0then fyinc(w) = 1, the unpadded binary representation of 1.

When the algorithm is executed on input w, the step at line 1 is checked and failed, since
w # A. The test at line 3 is reached and passed, since w begins with “0”. The test at
line 4 is checked next and is also passed, since |w| = 1, and the desired string “1” is
returned as output when the step at line 5 is reached and executed.

« Suppose, next, that n > 1, so that w begins with “1”. Either n = 2" — 1 for some positive
integer h — so that w = 1" — or n does not have this form and w includes at least one
copy of “0”. These cases are considered separately, below.

Oninputw € 3%

—_

binary:
if (w==2M\){
return A\
} else if (w starts with “0”) {
if (jw|==1){
return 1
}elseA{
return A\
}
} else if (w includes at least one copy of “0”) {
Return the string obtained from w by replacing the rightmost copy of “0”
with“1”, and by replacing every copy of “1” to the right of that symbol
with “0”
}else{
return 10", where h = |w|

¥

Figure 1: Algorithm to Compute the Function fy inc

— Ifn =2"—1, sothatw = 1" then f(w) = 10", the unpadded binary representation

of 2".

In this case, when the algorithm is executed on input w the test at line 1 fails, since
w # A. The test at line 3 also fails, since w does not begin with “0”. The test at line 7
is checked next, and also fails, since w does not include any copies of “0”. Thus the
step at line 9 is reached and executed — and one can see, by an examination of
this step, that the execution of the algorithm ends with f;, inc(w) returned as output
as desired, in this case.

Otherwise w includes at least one copy of “0”, and (considering the rightmost copy
of “0” in w),

w = 101"
for some string € X, and for some non-negative integer h. In this case,
fo inc(w) is the unpadded binary representation of n + 1, so that

fo.inc(w) = 110",

Thus fp inc(w) can be obtained from w by replacing the rightmost copy of “0” in w
with “1”, and replacing every copy of “0” to the right of this symbol with “0”.

In this case, when the algorithm is executed on input w, the test at line 1 fails, since
w # A. The test at line 3 also fails, since w does not begin with “0”. The test at line 7
is checked next, and is passed, since w includes at least one copy of “0”. Thus the
step at line 8 is reached and executed — and one can see, by an examination of
this step, that the execution of the algorithm ends with f;, jnc(w) returned as output
as desired in this case, as well.

Thus the execution of the algorithm ends, with fj, inc(w) returned as output, whenever w is the
unpadded binary representation of a non-negative integer.

Now consider an execution of this algorithm on an input string w € X, such that w is not
the unpadded binary representation of any natural number n — so that f, inc(w) = A. Either

w = A, or w is a string with length at least two that begins with “0”.

 If w = A, and the algorithm is executed on input w, then the test at line 1 is checked and
passed, so that the desired output, w is returned when the step at line 2 is reached and
executed.

* If w is a string with length at least two that begins with “0” and the algorithm is executed
on input w, then the step at line 1 is checked and failed, since w # A. The test at line 3
is checked and passed, since w begins with “0”. Since |w| > 2 the test at line 4 is failed
when reached and checked. Thus the step at line 6 is reached and executed and the
required output, A is returned in this case as well.

Thus the execution of the algorithm ends, with fj, inc(w) returned as output, whenever w is not
the unpadded binary representation of any non-negative integer n.

Thus this algorithm correctly computes the function fp inc.

4.3 A Turing Machine That Computes This Function

Now consider a Turing machine

M = (Q> Ebinary> Ebinary> ', 9, qo, Qhalt)a

with a set of states
Q = {90,491, 92,93, 94,95, 96, q7, 48> 99, Ghalt } »

a tape alphabet
I'= Ebinary U {I—la X} = {07 1%, I—'}»

and an incomplete transition diagram as shown in Figure 2 on page 9. The halt state, gnai,
and transitions leading to it, are not shown in Figure 2. The missing transitions, leading to the
halting state, are as follows.

0/0,R 0/U,L
U/U, L 1/1,R 1/U,L
0/0,R %
CJD 1/1,R @ L/U, L
0/X,R
start — QD
0/0,R 0/0,L
1/X,R 1/1,R 1/0,L 1/1,L
1/1,RC@D 0/0,R @ U/u, L @ 0/1,L
L/0,L
X/0,L
1/0,L

Figure 2: Incomplete State Diagram for a Turing Machine That Computes the Function fy inc

@) d(qo,0) = (ghar,U,L) foroc = Uand o =X
(b) 6(q1,%) = (ghar, U, L).

(c) (q2,0) = (gnat, 1,L) foro € T'

(d) d(g3,%) = (ghat, U, L).

(e) 6(qa,0) = (ghar,U,L) foroc =land o =X
(f) d(g6,X) = (gnar, U, L)

(9) 4(q7,0) = (ghar,U,L) foroc = land 0 = X
(h) 6(gs,0) = (ghar, 1,L) forc =Uand o =X

(i) (5((]9,0’) = (Qhalh 1,L) forc = U and o = X.

4.4 Proof of Correctness

As explained below, this Turing machine is an implementation of the algorithm in Figure 1, and
a proof of its correctness can be based on the proof of the correctness of this algorithm.

To begin, consider an input string w € X5, that is the unpadded binary representation of a
non-negative integer n.

« If n =0 then
Gow =qo0
F qu (Since 5((]07 O) = (qlv X>R'))
Fgo X (since 6(q1,U) = (g2,U,L))
F ghait 1 (since 0(q2,X) = (ghar, 1,L)).

Thus fy inc(w) = 1, the unpadded binary representation of 1, is computed in this case —
as desired.

Note that the transition “6(go,0) = (¢1,X,R) is, effectively, an implementation of the test
at line 1 of the algorithm — and its failure, when the output begins with “0”, along with
a successful execution of the test at line 3 of the algorithm. The transition “6(q1,U) =
(g2, U, L) is, effectively, an implement of a successful application of the test at line 4 of the
algorithm — and the transition “0(g2,X) = (gnan, 1,L)” is, effectively, an implementation
of the step at line 5.

e lfn>1,andn=2"—1,fora positive integer h, then w = 1l Suppose, first, that h = 1,
sothatn =1andw = 1. Then

Qow =qo1
FXgs (since 6(qo, 1) = (g5,X,R))
F g9 X0 (since 6(gs5, 1) = (g9,0,L))
= ghatt 10 (since 6(qo, X) = (ghatt, 1,L)).

Thus fyinc(1) = 10, the unpadded binary representation of 2, is computed in this case
— as desired.

Note that the transition “6(go, 1) = (g5, X,R)” is, effectively, an implementation of the test
at line 1 of the algorithm — and its failure, when the output begins with “1”, along with
a failed execution of the test at line 3 of the algorithm for this case. The steps in this
execution, after the first one, can be seen as an implementation of a failed execution

10

of the test at line 7 of the algorithm, and an implementation of the step at line 9 of the
algorithm, for this input.

Suppose, instead, that h > 2. Then
gow = q 1"
F Xq5 1h_1 (Since 5((]17 1) = (q57 X>R'))

Since 6(g5,1) = (g5, 1,R) it is possible to prove by induction on i that, for every integer i
suchthat0 <i < h — 2, 4 4
X511 EF X1t gg1h il

Thus
gow F* X g5 1" (as noted above)
F X172 g5 1 (by the above result, with i = h — 2)
Fx1h=1 gy (since §(gs,1) = (g5, 1,R))
Fx1h2 g9 10 (since 6(gs,U) = (g9, 0,L)).

Since 0(q9, 1) = (g9, 0,L) it is possible to prove by induction on i that, for every integer i
suchthatl <i<h —2,

X172 g9 10 H* X171 g9 107

Thus
gow F* X172 g9 10 (as noted above)
H* X1 g9 10772 (by the above result, with i = h — 2)
- Xgg 10" (since &(gg, 1) = (qg, 0,L))
o X 0" (since d(go, 1) = (49,0, L))
- Gnan 10" (since (g9, X) = (ghan, 1,L)).

Thus fpinc(w) = 10", the binary representation of 2", is computed in this case — as
desired..

Note, now, that state ¢5 is reached when the test at line 7 of the algorithm is to be
executed and that the transitions out of this state are being used to carry out this test by
sweeping right over the input string, searching for a copy of “0”. If no such copy of “0” is
every found — in the above case — then a transition is followed to state g9, and a sweep
back to the left is used to produce the desired output string, as shown above.

If a copy of “0” is found, so that the test at line 7 should pass, then a transition is used
to move from state gg instead of to state g9, and the computation is as described in the
next case.

11

+ Otherwise w includes at least one copy of “0” and (considering the rightmost copy of “0”
inw),
w = 101"

for some string 11 € X5, and for some non-negative integer . As noted in the analysis

of the above algorithm,
fo inc(w) = 110"
in this case.

Notice that — considering the leftmost copy of “0” in w instead of the rightmost copy —
one can see that
w = 1p01" = 1for

for a positive integer £ and for a string v € X5, It is now possible to show that
qow = qoléOV
FXgs 17 o (since §(qo, 1) = (g5, %, R))
F* X171 g5 ov (since 6(gs,1) = (¢5,1,R))
Fx1logg v (since 8(gs,0) = (g6, 0,R))
F* X1 ow gq (since 6(gs, o) = (g6, 0, R) for o € Epinary)
= Xpo1hgs (since and v are related as described above).

Exercise: Notice that this derivation included two steps including a sequence of zero or
moves, instead of one. Form statements that can be proved, by mathematical induction
(like ones used above) that can be proved, in order to show that this derivation is correct.

Thus the transition “5(gs,0) = (g, 0,R)” and the transitions out of state g5 implement the
test at line at line 7 of the algorithm — for the case where this succeeds — and a sweep
to the right over the input string, so that the step at line 8 can be implemented using a
sweep back to the left — which begins as soon as “LU” as seen and the Turing machine
moves to state q7.

The Turing machine remains in state g; while the rightmost copies of “1” are seen —
with each copy of “1” replaced by a copy of “0”. Once the rightmost copy of “0” in the
input string is seen, is seen this this replaced by a copy of “1” as the sweep left con-
tinues — with the Turing machine now moving to state gs. The sweep left continues
(without changing symbols on the tape) until the copy of “X™ at the left end of the tape
— and the transition “0(gs, X) = (gnart, 1,L)” is applied so that the computation ends in a
configuration
Ghalt 1:“10h

12

— so that the required string f, inc(w) has been computed in this case too.

Exercise: Use this description to write a proof of the correctness of this part of the Turing
machine that is (more-or-less) as detailed as the parts of the proof that came before it.

Next consider an input string w € X* that is not the unpadded binary representation of any
non-negative integer — so that either w = X or w is a string with length at least two that begins
with “0”.

» Suppose that w = A. Then

90 F qhait (since 6(qo, J) = (ghar, U, L))

— and the empty string is returned as output, as required.

Note that the transition “6(qp,J) = (gnar,L,L)” is an implementation of a successful
execution of the test at line 1 in the algorithm, along with an execution of the step at
line 2.

» Suppose, instead, that w is a string with length at least two that begins with “0”, so that
w:Oalag...ah
for a positive integer h and symbols a1, as, ..., o € Xpinary- Then

qow = q00a1a2 ... Qp
F qu Q10 ...0p (Since 5((]07 O) = (qlv X>R'))
F Xa1 g3 anas. .. ap (since a1 € Ypinary, S0 that §(q1,01) = (g3, a1,R)).

Exercise: Examining the transitions out of states ¢3 and ¢4 (and using previous parts
of this guide, as needed), confirm that the Turing machine sweeps right over the input,
while in state g3, and moves to state g4 when the end of the input has been reached. It
then sweeps right, while in state g4, replacing every symbol seen with “LI”, until the copy
of “X” is seen. and the transition “0(q4,X) = (gnan, U, L) is applied: The computation then
ends in configuration

Ghalt

so that the desired, output, fy inc(w) = A, has been computed in this case too.

Since the Turing machine computes the required output, fy, inc(w) in every possible case, this
Turing machine computes the function fy inc, as claimed.

Note: While this proof is long — if you have worked through and completed at least some of
the “exercises” included in its description — then it should be comprehensible.

13

Understanding this Turing machine, and writing a proof that it computes the desired function,
would have been much more difficult if an algorithm for the computation had not been pre-
sented, analyzed, and used to develop and analyze the Turing machine after that.

It is, generally, advisable to solve a problem “at a high level” so that you have more to work
with, before adding details needed to produce a Turing machine for a computation (along with
a proof that it does what it is supposed to).

5 A Suggested Exercise: Decrementing the Value of a Number in
Binary Notation

5.1 The Problem To Be Solved

Suppose that the alphabet Ypinary, and unpadded binary representations of non-negative inte-
gers, are defined as at the beginning of Section 4 (see, in particular, the equations at lines (2)
and (3)).
Let

Jo dec : Eginary - Z‘ginary

which is defined as follows:

+ If w is the unpadded binary representation of a positive integer n then fi, gec(w) is the
unpadded binary representation of n — 1.

* If either w = 0 or w is not the unpadded binary representation of any non-negative
integer, at all, then fp gec(w) = A.

Suppose we wish to design a Turing machine that computes functions

M = (Q, 2binary, Ebinary, I', 9, qo, Qhalt)

that computes the above function fp gec.

5.2 An Algorithm for This Computation — and a Proof of Its Correctness

To continue one should note that — for this computation — the function’s value is A whenever
w does not begin with “1”.

On the other hand, if w begins with “1” then w is the unpadded binary representation of some
positive integer n.

« lfn=1thenw =1 and f, gec(w) = 0, the unpadded binary representation of zero.

14

« If n = 2", for some positive integer h, then w = 10" and fi, gec(w) = 1", the unpadded
binary representation of 2" — 1.

» Otherwise w also includes at least two copies of “1”, so that
w = 110"

for some string 11 € X5, and some non-negative integer h. In this case

o dec(w) = 1u01".

Using this information, please write an algorithm — that might resemble the one shown in
Figure 1 — that computes the function f, 4ec — and explain why your algorithm is correct.
Your explanation might resemble found in Subsection 4.2, above.

5.3 A Turing Machine for This Computation — and a Proof of Its Correctness

Using the algorithm that you have now been obtained and, as needed, examining that Turing
machine in Figure 2 and its analysis — design a Turing machine that computes the func-
tion f, dec, @and sketch a proof of its correctness.

It is not necessary to given the proof at the level of detail used above to (unless you need to,
in order to be confident that you are not skipping too much and making mistakes) you should,
ideally, be reasonably confident that you could do this, if you had time (and wanted to do so).

15

