
Lecture #11: Simulations and Simple

Turing Machine Variants

Turing Machines That Compute Functions

Consider the problem of computing a (partial or total) function

f : Σ⋆
1 → Σ⋆

2

for alphabets Σ1 and Σ2, using a Turing machine that is similar to a Turing machine that rec-

ognizes a language.

This problem will be needed shortly in this course — when we consider ways to prove that

languages are undecidable (or even unrecognizable — so that students should be familiar

with the definitions of Turing machines given in Section 1, and of computable functions, given

in Section 2.

The rest of this document can be skipped unless students find this subject to be interesting,

wish to see examples of this kind of Turing machine or see how things can be proved about

these machines — as in Sections 3 – 5.

1 Definition

A one-tape Turing machine that computes a partial or total function

f : Σ⋆
1 → Σ⋆

2,

for alphabets Σ1 and Σ2, can be modelled as a 7-tuple

M = (Q,Σ1,Σ2,Γ, δ, q0, qhalt)

where Q, Σ1, Σ2, Γ, δ, q0, and qhalt are as follows.

• Q is a finite, and non-empty, set of states. It is used in the same way as the set of states

does, for Turing machines that recognize languages.

1

• Σ1 is an alphabet (such that Σ1 ∩ Q = ∅ and such that ⊔ /∈ Σ1), called the input

alphabet . It plays the same role as the “input alphabet” does for Turing machines that

recognize languages.

• Σ2 is another (possibly different) alphabet (such that Σ2 ∩Q = ∅ and such that ⊔ /∈ Σ2),

called the output alphabet .

• Γ is an alphabet, called the alphabet , which is used in the same was as the tape alpha-

bet is, for a Turing machine that recognizes languages. Σ1 ⊆ Γ, Σ2 ⊆ Γ, and ⊔ ∈ Γ —

but Γ might also include finite may other symbols that are not in Σ1 ∪ Σ2 ∪ {⊔}.

• q0 is a state in Q, called the start state. This plays the same role, for Turing machines

that compute functions as it does for Turing machines that recognize languages.

• qhalt is the halt state. This plays a role that is similar to role that the accepting state,

“qaccept” and the rejecting state, “qreject”, do, for Turing machines that recognize languages

(see the description of the transition function, δ, to see how).

• Like the transition function for Turing machines, the transition function, δ, is a partial

function

δ : Q× Γ → Q× Γ× {L, R}.

In particular, δ(q, σ) should be defined for every state q ∈ Q such that q 6= qhalt, and for

every symbol σ ∈ Γ — but δ(qhalt, σ) should not be defined, for any symbol σ ∈ Γ.

Configurations of a Turing machine that computes a function are described, as strings over the

alphabet Q ∪ Γ, just as they are for Turing machines that recognize languages. The transition

function is used to update the Turing machine’s tape in the same way for both kinds of Turing

machines as well.

The initial configuration for an input string, ω ∈ Σ⋆
1, is the same as it is for Turing machines

that recognize languages: The Turing machine is in its start state, the input string is written

on the leftmost cells of the tape, with copies of “⊔” on all cells to the right, and the tape head

points to the leftmost cell of the tape — so that is the configuration represented by the string

“q0 ω”.

If this Turing computes a partial function f : Σ⋆
1 → Σ⋆

2 then the following properties are satis-

fied, for every string ω ∈ Σ⋆
1:

• If f is defined at ω then the Turing machine’s execution on input ω halts, with f(ω) written

on the leftmost cells of the tape, with copies of “⊔” to the right, and with the tape head

pointing to the leftmost cell. Thus the Turing machine is in the configuration represented

by the string “qhalt f(ω)” when the computation ends.

• If f is undefined at ω then the Turing machine loops on ω.

2

2 Computable Functions

Let us say that a function f : Σ⋆
1 → Σ⋆

2 is computable if there exists a standard Turing

machine M that computes functions, as defined above, with input alphabet Σ1 and output

alphabet Σ2, such that M computes f .

3 A Simple Example: Incrementing the Value of a Number in Unary

Notation

3.1 The Problem To Be Solved

Suppose that Σunary = {1}. A string 1n ∈ Σ⋆
unary can be used as the unary representation

of n, for every non-negative integer n. Let

fu inc : Σ
⋆
unary → Σ⋆

unary

be the function mapping the unary representation of n to the unary representation of n+ 1 —

so that

fu inc(1
n) = 1

n+1 (1)

— for every non-negative integer n.

3.2 How Could This Problem Be Solved Using a Turing Machine?

Suppose we wish to design a Turing machine that computes functions

M = (Q,Σunary,Σunary,Γ, δ, q0, qhalt)

that computes the above function fu inc.

Since fu inc is as shown at line (1), above, all that M must do is add another copy of “1” to the

end of its input string. If “⊔” is visible immediately (so that the input is the empty string then

M should write a copy of “1” without moving its tape head. Otherwise — marking the leftmost

symbol on the tape, so that it can be found again, M ’s tape head should be swept right until

the leftmost copy of “⊔” is found. This should be replace by a copy of “1” as the head begins

to move left. The tape head should continue to move left until the marked leftmost symbol

is found. This should be replaced by a copy of “1”, without moving the top head — and the

computation can end at this point.

There are multiple ways to mark the leftmost cell of the tape. One way that that does not

always work — but that works for this problem — is to replace the symbol with “⊔”.

3

3.3 A Turing Machine That Computes This Function

Using this approach one can set

Q = {q0, q1, q2, qhalt}, Γ = Σunary ∪ {⊔} = {1,⊔},

and to set δ is shown by the following figure — where the halting state is shown as “qH ” instead

of “qhalt”, to keep the picture simple:

q0start q1 q2

qH

1/⊔, R

⊔/1, L

1/1, R

⊔/1, L

1/1, L

⊔/1, L

3.4 Proof of Correctness

Now note that if M is as described, then

q0 ⊢ qhalt1 (since δ(q0,⊔) = (qhalt, 1, L))

— as required when the input is the empty string, since

fu inc(λ) = fu inc(1
0) = 1

1 = 1.

Note, as well, that

q01 ⊢ ⊔ q1 (since δ(q0, 1) = (q1,⊔, R))

⊢ q2 ⊔ 1 (since δ(q1,⊔) = (q2, 1, L))

⊢ qhalt 11 (since δ(q2,⊔) = (qhalt, 1, L))

— as required when the input is the string “1”, since

fu inc(1) = fu inc(1
1) = 1

2 = 11.

Now consider an execution of the algorithm on an input 1n for an integer n such that n ≥ 2.

This begins as follows;

q0 1
n ⊢ ⊔ q1 1

n−1 (since δ(q0, 1) = (q1,⊔, R)).

4

Ideally, the following should not be difficult — the required proof resembles one included in the

lecture presentation for Lecture #10.

Exercise: Prove, by induction on i, that — for every integer i such that 0 ≤ i ≤ n− 2 —

⊔ q1 1
n−1 ⊢⋆ ⊔1i q1 1

n−i−1.

It now follows that

q0 1
n ⊢ ⊔1n−1 q1 (since δ(q0, 1) = (q1,⊔, R))

⊢⋆ ⊔1n−2 q2 1
2 (since δ(q1,⊔) = (q2, 1, L).)

Once again, the following can be completed by proving a proof resembling one from the lecture

presentation for Lecture #10.

Exercise: Prove, by induction on j that — for every integer j such that 0 ≤ j ≤ n− 2 —

⊔1n−2 q2 1
2 ⊢⋆ ⊔1n−j−2 q2 1

j+2.

Thus

q0 1
n ⊢⋆ ⊔1n−2 q2 1

2 (using the derivation as given, so far)

⊢⋆ ⊔ q2 1
n (by the above result, when j = n− 2)

⊢ q2 ⊔ 1
n (since δ(q2, 1) = (q2, 1, L))

⊢ qhalt 1
n+1 (since δ(q2,⊔) = (qhalt, 1, L).)

That is, when n ≥ 2,

q0 1
n ⊢⋆ qhalt 1

n+1

— as required when the input string is 1n for n ≥ 2.

Examining all the above derivations, one can see that this Turing machine computes the func-

tion fu inc, as desired.

4 A More Complicated Example: Incrementing the Value of a Num-

ber in Binary Notation

4.1 The Problem To Be Solved

Now suppose that Σbinary = {0, 1}. A string

ω = αkαk−1 . . . α2α1α0 ∈ Σ⋆
binary (2)

5

(with length k+ 1) is the unpadded binary representation of a non-negative integer if ω 6= λ
(so that k ≥ 0) and either k = 0 or k ≥ 1 and αk = 1 — so that this string is not “padded” with

leading copies of 0. In particular, if ω is as shown at line (2), which satisfies this condition, is

the unpadded binary representation of n, for a non-negative integer n, if

n =

k∑

i=0

αi · 2
i. (3)

Let

fb inc : Σ
⋆
binary → Σ⋆

binary

which is defined as follows:

• If ω is the unpadded binary representation of a non-negative integer n then fb inc(ω) is

the unpadded binary representation of n+ 1.

• If ω is not the unpadded binary representation of any non-negative integer, at all, then

fb inc(ω) = λ.

Suppose we wish to design a Turing machine that computes functions

M = (Q,Σbinary,Σbinary,Γ, δ, q0, qhalt)

that computes the above function fb inc.

4.2 An Algorithm for This Computation — and Proof of Its Correctness

To begin, consider the algorithm shown in Figure 1 on page 7.

Consider an execution of this algorithm on an input string ω ∈ Σ⋆
binary such that ω is the

unpadded binary representation of a natural number n.

• If n = 0 then fb inc(ω) = 1, the unpadded binary representation of 1.

When the algorithm is executed on input ω, the step at line 1 is checked and failed, since

ω 6= λ. The test at line 3 is reached and passed, since ω begins with “0”. The test at

line 4 is checked next and is also passed, since |ω| = 1, and the desired string “1” is

returned as output when the step at line 5 is reached and executed.

• Suppose, next, that n ≥ 1, so that ω begins with “1”. Either n = 2h − 1 for some positive

integer h — so that ω = 1h — or n does not have this form and ω includes at least one

copy of “0”. These cases are considered separately, below.

6

On input ω ∈ Σ⋆
binary:

1. if (ω == λ) {

2. return λ

3. } else if (ω starts with “0”) {

4. if (|ω| == 1) {

5. return 1

} else {

6. return λ

}

7. } else if (ω includes at least one copy of “0”) {

8. Return the string obtained from ω by replacing the rightmost copy of “0”

with“1”, and by replacing every copy of “1” to the right of that symbol

with “0”

} else {

9. return 10h, where h = |ω|

}

Figure 1: Algorithm to Compute the Function fb inc

– If n = 2h− 1, so that ω = 1h then f(ω) = 10h, the unpadded binary representation

of 2h.

In this case, when the algorithm is executed on input ω the test at line 1 fails, since

ω 6= λ. The test at line 3 also fails, since ω does not begin with “0”. The test at line 7
is checked next, and also fails, since ω does not include any copies of “0”. Thus the

step at line 9 is reached and executed — and one can see, by an examination of

this step, that the execution of the algorithm ends with fb inc(ω) returned as output

as desired, in this case.

– Otherwise ω includes at least one copy of “0”, and (considering the rightmost copy

of “0” in ω),

ω = 1µ01h

for some string µ ∈ Σ⋆
binary and for some non-negative integer h. In this case,

fb inc(ω) is the unpadded binary representation of n+ 1, so that

fb inc(ω) = 1µ10h.

Thus fb inc(ω) can be obtained from ω by replacing the rightmost copy of “0” in ω
with “1”, and replacing every copy of “0” to the right of this symbol with “0”.

7

In this case, when the algorithm is executed on input ω, the test at line 1 fails, since

ω 6= λ. The test at line 3 also fails, since ω does not begin with “0”. The test at line 7
is checked next, and is passed, since ω includes at least one copy of “0”. Thus the

step at line 8 is reached and executed — and one can see, by an examination of

this step, that the execution of the algorithm ends with fb inc(ω) returned as output

as desired in this case, as well.

Thus the execution of the algorithm ends, with fb inc(ω) returned as output, whenever ω is the

unpadded binary representation of a non-negative integer.

Now consider an execution of this algorithm on an input string ω ∈ Σ⋆
binary such that ω is not

the unpadded binary representation of any natural number n — so that fb inc(ω) = λ. Either

ω = λ, or ω is a string with length at least two that begins with “0”.

• If ω = λ, and the algorithm is executed on input ω, then the test at line 1 is checked and

passed, so that the desired output, ω is returned when the step at line 2 is reached and

executed.

• If ω is a string with length at least two that begins with “0” and the algorithm is executed

on input ω, then the step at line 1 is checked and failed, since ω 6= λ. The test at line 3
is checked and passed, since ω begins with “0”. Since |ω| ≥ 2 the test at line 4 is failed

when reached and checked. Thus the step at line 6 is reached and executed and the

required output, λ is returned in this case as well.

Thus the execution of the algorithm ends, with fb inc(ω) returned as output, whenever ω is not

the unpadded binary representation of any non-negative integer n.

Thus this algorithm correctly computes the function fb inc.

4.3 A Turing Machine That Computes This Function

Now consider a Turing machine

M = (Q,Σbinary,Σbinary,Γ, δ, q0, qhalt),

with a set of states

Q = {q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, qhalt},

a tape alphabet

Γ = Σbinary ∪ {⊔, X} = {0, 1, X,⊔},

and an incomplete transition diagram as shown in Figure 2 on page 9. The halt state, qhalt,

and transitions leading to it, are not shown in Figure 2. The missing transitions, leading to the

halting state, are as follows.

8

q0start

q1

q2

q3 q4

q5 q6 q7 q8

q9

0/X, R

1/X, R

⊔/⊔, L

0/0, R
1/1, R

0/0, R
1/1, R

⊔/⊔, L

0/⊔, L
1/⊔, L

1/1, R
0/0, R

⊔/0, L
X/0, L

0/0, R
1/1, R

⊔/⊔, L

1/0, L

0/1, L

0/0, L
1/1, L

1/0, L

Figure 2: Incomplete State Diagram for a Turing Machine That Computes the Function fb inc

(a) δ(q0, σ) = (qhalt,⊔, L) for σ = ⊔ and σ = X.

(b) δ(q1, X) = (qhalt,⊔, L).

(c) δ(q2, σ) = (qhalt, 1, L) for σ ∈ Γ.

(d) δ(q3, X) = (qhalt,⊔, L).

(e) δ(q4, σ) = (qhalt,⊔, L) for σ = ⊔ and σ = X.

(f) δ(q6, X) = (qhalt,⊔, L).

(g) δ(q7, σ) = (qhalt,⊔, L) for σ = ⊔ and σ = X.

(h) δ(q8, σ) = (qhalt, 1, L) for σ = ⊔ and σ = X.

9

(i) δ(q9, σ) = (qhalt, 1, L) for σ = ⊔ and σ = X.

4.4 Proof of Correctness

As explained below, this Turing machine is an implementation of the algorithm in Figure 1, and

a proof of its correctness can be based on the proof of the correctness of this algorithm.

To begin, consider an input string ω ∈ Σ⋆
binary that is the unpadded binary representation of a

non-negative integer n.

• If n = 0 then

q0 ω = q0 0

⊢ X q1 (since δ(q0, 0) = (q1, X, R))

⊢ q2 X (since δ(q1,⊔) = (q2,⊔, L))

⊢ qhalt 1 (since δ(q2, X) = (qhalt, 1, L)).

Thus fb inc(ω) = 1, the unpadded binary representation of 1, is computed in this case —

as desired.

Note that the transition “δ(q0, 0) = (q1, X, R) is, effectively, an implementation of the test

at line 1 of the algorithm — and its failure, when the output begins with “0”, along with

a successful execution of the test at line 3 of the algorithm. The transition “δ(q1,⊔) =
(q2,⊔, L) is, effectively, an implement of a successful application of the test at line 4 of the

algorithm — and the transition “δ(q2, X) = (qhalt, 1, L)” is, effectively, an implementation

of the step at line 5.

• If n ≥ 1, and n = 2h−1, for a positive integer h, then ω = 1h. Suppose, first, that h = 1,

so that n = 1 and ω = 1. Then

q0 ω = q0 1

⊢ X q5 (since δ(q0, 1) = (q5, X, R))

⊢ q9 X0 (since δ(q5,⊔) = (q9, 0, L))

⊢ qhalt 10 (since δ(q9, X) = (qhalt, 1, L)).

Thus fb inc(1) = 10, the unpadded binary representation of 2, is computed in this case

— as desired.

Note that the transition “δ(q0, 1) = (q5, X, R)” is, effectively, an implementation of the test

at line 1 of the algorithm — and its failure, when the output begins with “1”, along with

a failed execution of the test at line 3 of the algorithm for this case. The steps in this

execution, after the first one, can be seen as an implementation of a failed execution

10

of the test at line 7 of the algorithm, and an implementation of the step at line 9 of the

algorithm, for this input.

Suppose, instead, that h ≥ 2. Then

q0 ω = q1 1
h

⊢ X q5 1
h−1 (since δ(q1, 1) = (q5, X, R)).

Since δ(q5, 1) = (q5, 1, R) it is possible to prove by induction on i that, for every integer i
such that 0 ≤ i ≤ h− 2,

Xq51
h−1 ⊢⋆

X1
i q51

h−i−1.

Thus

q0 ω ⊢⋆
X q5 1

h−t (as noted above)

⊢⋆
X1

h−2 q5 1 (by the above result, with i = h− 2)

⊢ X1
h−1 q5 (since δ(q5, 1) = (q5, 1, R))

⊢ X1
h−2 q9 10 (since δ(q5,⊔) = (q9, 0, L)).

Since δ(q9, 1) = (q9, 0, L) it is possible to prove by induction on i that, for every integer i
such that 1 ≤ i ≤ h− 2,

X1
h−2 q9 10 ⊢⋆

X1
h−i−1 q9 10

i.

Thus

q0 ω ⊢⋆
X1

h−2 q9 10 (as noted above)

⊢⋆
X1 q9 10

h−2 (by the above result, with i = h− 2)

⊢ X q9 10
h−1 (since δ(q9, 1) = (q9, 0, L))

⊢ q9 X 0
h (since δ(q9, 1) = (q9, 0, L))

⊢ qhalt 10
h (since δ(q9, X) = (qhalt, 1, L)).

Thus fb inc(ω) = 10h, the binary representation of 2h, is computed in this case — as

desired..

Note, now, that state q5 is reached when the test at line 7 of the algorithm is to be

executed and that the transitions out of this state are being used to carry out this test by

sweeping right over the input string, searching for a copy of “0”. If no such copy of “0” is

every found — in the above case — then a transition is followed to state q9, and a sweep

back to the left is used to produce the desired output string, as shown above.

If a copy of “0” is found, so that the test at line 7 should pass, then a transition is used

to move from state q6 instead of to state q9, and the computation is as described in the

next case.

11

• Otherwise ω includes at least one copy of “0” and (considering the rightmost copy of “0”

in ω),

ω = 1µ01h

for some string µ ∈ Σ⋆
binary and for some non-negative integer h. As noted in the analysis

of the above algorithm,

fb inc(ω) = 1µ10h

in this case.

Notice that — considering the leftmost copy of “0” in ω instead of the rightmost copy —

one can see that

ω = 1µ01h = 1
ℓ
0ν

for a positive integer ℓ and for a string ν ∈ Σ⋆
binary. It is now possible to show that

q0 ω = q01
ℓ
0ν

⊢ X q5 1
ℓ−1

0ν (since δ(q0, 1) = (q5, X, R))

⊢⋆
X1

ℓ−1 q5 0ν (since δ(q5, 1) = (q5, 1, R))

⊢ X1
ℓ−1

0 q6 ν (since δ(q5, 0) = (q6, 0, R))

⊢⋆
X1

ℓ−1
0ν q6 (since δ(q6, σ) = (q6, σ, R) for σ ∈ Σbinary)

= Xµ01hq6 (since µ and ν are related as described above).

Exercise: Notice that this derivation included two steps including a sequence of zero or

moves, instead of one. Form statements that can be proved, by mathematical induction

(like ones used above) that can be proved, in order to show that this derivation is correct.

Thus the transition “δ(q5, 0) = (q6, 0, R)” and the transitions out of state q6 implement the

test at line at line 7 of the algorithm — for the case where this succeeds — and a sweep

to the right over the input string, so that the step at line 8 can be implemented using a

sweep back to the left — which begins as soon as “⊔” as seen and the Turing machine

moves to state q7.

The Turing machine remains in state q7 while the rightmost copies of “1” are seen —

with each copy of “1” replaced by a copy of “0”. Once the rightmost copy of “0” in the

input string is seen, is seen this this replaced by a copy of “1” as the sweep left con-

tinues — with the Turing machine now moving to state q8. The sweep left continues

(without changing symbols on the tape) until the copy of “X”’ at the left end of the tape

— and the transition “δ(q8, X) = (qhalt, 1, L)” is applied so that the computation ends in a

configuration

qhalt 1µ10
h

12

— so that the required string fb inc(ω) has been computed in this case too.

Exercise: Use this description to write a proof of the correctness of this part of the Turing

machine that is (more-or-less) as detailed as the parts of the proof that came before it.

Next consider an input string ω ∈ Σ⋆ that is not the unpadded binary representation of any

non-negative integer — so that either ω = λ or ω is a string with length at least two that begins

with “0”.

• Suppose that ω = λ. Then

q0 ⊢ qhalt (since δ(q0,⊔) = (qhalt,⊔, L))

— and the empty string is returned as output, as required.

Note that the transition “δ(q0,⊔) = (qhalt,⊔, L)” is an implementation of a successful

execution of the test at line 1 in the algorithm, along with an execution of the step at

line 2.

• Suppose, instead, that ω is a string with length at least two that begins with “0”, so that

ω = 0α1α2 . . . αh

for a positive integer h and symbols α1, α2, . . . , αh ∈ Σbinary. Then

q0 ω = q0 0α1α2 . . . αh

⊢ X q1 α1α2 . . . αh (since δ(q0, 0) = (q1, X, R))

⊢ Xα1 q3 α2α3 . . . αh (since α1 ∈ Σbinary, so that δ(q1, α1) = (q3, α1, R)).

Exercise: Examining the transitions out of states q3 and q4 (and using previous parts

of this guide, as needed), confirm that the Turing machine sweeps right over the input,

while in state q3, and moves to state q4 when the end of the input has been reached. It

then sweeps right, while in state q4, replacing every symbol seen with “⊔”, until the copy

of “X” is seen. and the transition “δ(q4, X) = (qhalt,⊔, L) is applied: The computation then

ends in configuration

qhalt

so that the desired, output, fb inc(ω) = λ, has been computed in this case too.

Since the Turing machine computes the required output, fb inc(ω) in every possible case, this

Turing machine computes the function fb inc, as claimed.

Note: While this proof is long — if you have worked through and completed at least some of

the “exercises” included in its description — then it should be comprehensible.

13

Understanding this Turing machine, and writing a proof that it computes the desired function,

would have been much more difficult if an algorithm for the computation had not been pre-

sented, analyzed, and used to develop and analyze the Turing machine after that.

It is, generally, advisable to solve a problem “at a high level” so that you have more to work

with, before adding details needed to produce a Turing machine for a computation (along with

a proof that it does what it is supposed to).

5 A Suggested Exercise: Decrementing the Value of a Number in

Binary Notation

5.1 The Problem To Be Solved

Suppose that the alphabet Σbinary, and unpadded binary representations of non-negative inte-

gers, are defined as at the beginning of Section 4 (see, in particular, the equations at lines (2)

and (3)).

Let

fb dec : Σ
⋆
binary → Σ⋆

binary

which is defined as follows:

• If ω is the unpadded binary representation of a positive integer n then fb dec(ω) is the

unpadded binary representation of n− 1.

• If either ω = 0 or ω is not the unpadded binary representation of any non-negative

integer, at all, then fb dec(ω) = λ.

Suppose we wish to design a Turing machine that computes functions

M = (Q,Σbinary,Σbinary,Γ, δ, q0, qhalt)

that computes the above function fb dec.

5.2 An Algorithm for This Computation — and a Proof of Its Correctness

To continue one should note that — for this computation — the function’s value is λ whenever

ω does not begin with “1”.

On the other hand, if ω begins with “1” then ω is the unpadded binary representation of some

positive integer n.

• If n = 1 then ω = 1 and fb dec(ω) = 0, the unpadded binary representation of zero.

14

• If n = 2h, for some positive integer h, then ω = 10h and fb dec(ω) = 1h, the unpadded

binary representation of 2h − 1.

• Otherwise ω also includes at least two copies of “1”, so that

ω = 1µ10h

for some string µ ∈ Σ⋆
binary and some non-negative integer h. In this case

fb dec(ω) = 1µ01h.

Using this information, please write an algorithm — that might resemble the one shown in

Figure 1 — that computes the function fb dec — and explain why your algorithm is correct.

Your explanation might resemble found in Subsection 4.2, above.

5.3 A Turing Machine for This Computation — and a Proof of Its Correctness

Using the algorithm that you have now been obtained and, as needed, examining that Turing

machine in Figure 2 and its analysis — design a Turing machine that computes the func-

tion fb dec, and sketch a proof of its correctness.

It is not necessary to given the proof at the level of detail used above to (unless you need to,

in order to be confident that you are not skipping too much and making mistakes) you should,

ideally, be reasonably confident that you could do this, if you had time (and wanted to do so).

15

