
Lecture #11: Simulations and Simple

Turing Machine Variants

Equivalence of Standard Turing Machines and Turing

Machines with Left Failure

This document — which is not required reading — provides additional details about the proof,

sketched in the preparatory material for this lecture, that the sets of recognizable and decid-

able languages would not be changed, if these were defined using “Turing Machines with Left

Failure” instead of the (standard) Turing machines introduced in Lecture #10.

Turing Machines with Left Failure

A Turing machine with left failure is a variant of a Turing machine

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

where Q, Σ, Γ, δ, q0, qaccept and qreject are all as before, but the transition function, δ, is applied

differently: Whenever a transition

δ(q, σ) = (r, τ, L)

is to be applied, for q, r ∈ Q and σ, τ ∈ Γ, and the tape head is already at the leftmost cell then

— instead of continuing without moving the location of the tape head — the computation halts

and the input string is rejected .

Simulating Standard Turing Machines using Turing Machines with

Left Failure

Claim 4. Let L ⊆ Σ⋆.

(a) If L is recognizable then there exists a Turing machine, with left failure, with language L.

(b) If L is decidable then there exists a Turing machine, with left failure, that decides L.

1

A simulation will be used to prove this result.

Let L ⊆ Σ⋆ and suppose that L is recognizable. Then there exists a (standard) Turing machine

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

such that L = L(M). In order to prove the claim, let us describe a Turing machine with left

failure,

M̂ = (Q̂,Σ, Γ̂, δ̂, q̂0, q̂accept, q̂reject)

that simulates the given Turing machine, M .

Representing a Configuration of M

The main idea, here, will be to shift everything on the tape over by one symbol, using a special

marker at the left end of the tape — so that the simulating machine, M̂ can know when the

simulated machine is trying to move past the left end of the tape. In particular, let “#” be a

symbol such that # /∈ Γ and let

Γ̂ = Γ ∪ {#}.

For strings µ, ν ∈ Γ⋆ and a state q ∈ Q a configuration “µqν”, of M , will be represented using

the configuration

#µqν

of M̂ . All states in Q will be included in Q̂, so that M ’s configurations can be represented in

this way.

Initialization

In order for M̂ to move from its initial configuration, for a string ω ∈ Σ⋆, to its representation of

M ’s initial configuration for this string, let

Q̂Init = {q̂0} ∪ {q̂1,σ | σ ∈ Σ} ∪ {q̂2}

be a set of (distinct) new states that do not belong to Q — which will be included in Q̂. In order

to begin the definition of δ̂ let us define transitions as follows.

• δ̂(q̂0,⊔) = (q0, #, R).

• For every symbol σ ∈ Σ, δ̂(q̂0, σ) = (q̂1,σ, #, R).

• For all symbols σ, τ ∈ Σ, δ̂(q̂1,σ, τ) = (q̂1,τ , σ, R).

• For every symbol σ ∈ Σ, δ̂(q̂1,σ,⊔) = (q̂2, σ, L).

• For every symbol σ ∈ Σ, δ̂(q̂2, σ) = (q̂2, σ, L).

2

• δ̂(q̂2, #) = (q0, #, R).

Note that

q̂0 ⊢ # q0 (since δ̂(q̂0,⊔) = (q0, #, R).

Thus, when ω = λ, then M̂ moves from its initial configuration for ω to its representation of

M ’s initial configuration for ω, using a single step.

Suppose, next, that |ω| = 1 — so that ω = σ, for some symbol σ ∈ Σ. Then

q̂0 σ ⊢ # q̂1,σ (since δ̂(q̂0, σ) = (q̂1,σ, #, R))

⊢ q̂2 #σ (since δ̂(q̂1,σ,⊔) = (q̂2, σ, L))

⊢ # q0 σ (since δ̂(q̂2, #) = (q0, #, R)).

Thus, when |ω| = 1, M̂ moves from its initial configuration for ω to its representation of M ’s

initial configuration for ω, using three steps.

Suppose, now, that |ω| ≥ 2. Let

ω = α1α2 . . . αn

(for α1, α2, . . . , αn ∈ Σ). Then

q̂0 ω = q̂0 α1α2 . . . αn

⊢ # q̂1,α1
α2α3 . . . αn (since δ̂(q̂0, α1) = (q̂1,α1

, #, R)).

Exercise: Using induction on i, prove that

q̂0ω ⊢⋆
#α1α2 . . . αi−1 q̂1,αi

αi+1αi+2 . . . αn

for every integer i such that 2 ≤ i ≤ n− 1.

Continuing,

q̂0ω ⊢⋆
#α1α2 . . . αn−2 q̂1,αn−1

αn (by the above result, when i = n− 1)

⊢ #α1α2 . . . αn−1 q̂1,αn
(since δ̂(q̂1,αn−1

, αn) = (q̂1,αn
, αn−1, R))

⊢ #α1α2 . . . αn−2 q̂2 αn−1αn (since δ̂(q̂1,αn
,⊔) = (q̂2, αn, L)).

Recall that δ̂(q̂2, β) = (q̂2, β, L) for every symbol β ∈ Σ.

Exercise: Using induction on i, prove that

q̂0ω ⊢⋆
#α1α2 . . . αn−i−1 q̂2 αn−iαn−i+1 . . . αn

for every integer i such that 1 ≤ i ≤ n− 2.

3

Continuing, once again,

q̂0ω ⊢⋆
q̂2 α1α2 . . . αn (by the above result, when i = n− 2)

⊢ q̂2 #α1α2 . . . αn (since δ̂(q̂2, α1) = (q̂2, α1, L))

⊢ # q0 α1α2 . . . αn (since δ̂(q̂2, #) = (q0, #, R))

= # q0 ω.

Thus M̂ moves from its initial configuration for ω to its representation of M ’s initial configuration

for ω, when |ω| ≥ 2, as well.

Simulating a Step of M

For q ∈ Q \ {qaccept, qreject} and σ ∈ Γ suppose that

δ̂(q, σ) = δ(q, σ)

Two situations might arise after this transition has been applied:

(a) The symbol # is not visible on M̂ ’s tape — so that M did not try to move past the left

end of this tape when this step was carried out, a symbol in Γ is visible — and M̂ is in a

configuration representing the configuration that M would reach after this step is taken (as

desired).

(b) The symbol # is visible on M̂ ’s tape — so that M tried to move past the left end of its tape

when this step was carried out.

Let us add the transition

δ̂(r, #) = (r, #, R)

for every state r ∈ Q to ensure that M̂ can go to its representation of the configuration that

M would move to, in this case as well.

Cleanup

It remains only to ensure that M̂ moves from a representation of an accepting configuration

(respectively, a rejecting configuration) to an accepting configuration (respectively, rejecting

configuration) of its own. The inclusion of the transitions

δ̂(qaccept, σ) = (q̂accept, σ, R) and δ̂(qreject, σ) = (q̂reject, σ, R),

for all σ ∈ Γ, ensures this.

4

Completing the Proof

Let ω ∈ Σ⋆. One can now prove, by induction on t, that if t is a non-negative integer such that

— when executed on input ω — M reaches a configuration

µqν

for µ, ν ∈ Γ⋆ and q ∈ Q, after taking t steps, then M̂ moves from configuration #q0ω to

configuration #µqν after taking between t and 2t steps.

This can be used to prove that, for every string ω ∈ Σ⋆,

• M accepts ω if and only if M̂ accepts ω,

• M rejects ω if and only if M̂ rejects ω, and

• M loops on ω if and only if M̂ loops on ω,

as needed to complete a proof of this claim.

Simulating Turing Machines with Left Failure Using Standard Tur-

ing Machines

Claim 5. Let L ⊆ Σ⋆.

(a) If there exists a Turing machine with left failure, whose language is L, then L is recogniz-

able..

(b) If there exists a Turing machine, with left failure, that decides L, then L is decidable.

A simulation will be used to prove this result, as well.

Let L ⊆ Σ⋆, and let

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

be a Turing machine, with left failure, whose language is L. In order to prove the claim, let us

describe a (standard) Turing machine,

M̂ = (Q̂,Σ, Γ̂, δ̂, q̂0, q̂accept, q̂reject)

that simulates the given Turing machine with left failure, M .

Representing a Configuration of M

Once again the main idea, here, will be to shift everything on the tape over by one symbol,

using a special marker at the left end of the tape — so that the simulating machine, M̂ can

5

know when the simulated machine is trying to move past the left end of the tape. As above, let

“#” be a symbol such that # /∈ Γ and let

Γ̂ = Γ ∪ {#}.

For strings µ, ν ∈ Γ⋆ and a state q ∈ Q a configuration “µqν”, of M , will be represented using

the configuration

#µqν

of M̂ .

Initialization

Since M̂ ’s representation of a configuration of M is the same, for this simulation, as the one

used for the simulation used to prove Claim 4, the Initialization phase that was used in the

above simulation can be used, here, as well.

Simulating a Step of M

For q ∈ Q \ {qaccept, qreject} and σ ∈ Γ suppose that

δ̂(q, σ) = δ(q, σ)

Two situations might arise after this transition has been applied:

(a) The symbol # is not visible on M̂ ’s tape — so that M did not try to move past the left

end of this tape when this step was carried out, a symbol in Γ is visible — and M̂ is in a

configuration representing the configuration that M would reach after this step is taken (as

desired).

(b) The symbol # is visible on M̂ ’s tape — so that M tried to move past the left end of its tape

when this step was carried out.

Let us add the transition

δ̂(r, #) = (qreject, #, R)

— for every state r ∈ Q — to ensure that M̂ is in a configuration representing a rejecting

configuration of M , whenever M would have tried to fall off the left end of its tape.

6

Cleanup

As with the previous simulation, it remains only to ensure that M̂ moves from a representation

of an accepting configuration (respectively, a rejecting configuration) to an accepting configu-

ration (respectively, rejecting configuration) of its own. The inclusion of the transitions

δ̂(qaccept, σ) = (q̂accept, σ, R) and δ̂(qreject, σ) = (q̂reject, σ, R),

for all σ ∈ Γ, ensures this.

Completing the Proof

Let ω ∈ Σ⋆. One can now prove, by induction on t, that if t is a non-negative integer such that

— when executed on input ω — M reaches a configuration

µqν

for µ, ν ∈ Γ⋆ and q ∈ Q, after taking t steps, without trying to move past the left end of

its tape, then M̂ moves from configuration #q0ω to configuration #µqν after taking between t
and 2t steps. If M rejects by trying to move left past the left end of its tape, after taking t steps,

then M̂ enters a representation of a rejecting configuration of M after taking between t and

2t steps.

This can be used to prove that, for every string ω ∈ Σ⋆,

• M accepts ω if and only if M̂ accepts ω,

• M rejects ω if and only if M̂ rejects ω, and

• M loops on ω if and only if M̂ loops on ω,

as needed to complete a proof of this claim.

7

