Introduction to Turing Machines Supplement for Preparatory Viewing

Representing and Working with Configurations

Consider a Turing machine with input alphabet $\Sigma = \{0, 1\}$ and start state q_0 . Suppose that the set of this Turing machines also includes states q_1 and q_2 , and that its tape alphabet is

$$\Gamma = \Sigma \cup \{\sqcup, \$\}.$$

Let this Turing machine's transition be a partial function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$.

• The *initial configuration* on an input string $\omega = 0010 \in \Sigma^*$ looks like

and is represented by the string

 q_0 0010

• Suppose that $\delta(q_0, 0) = (q_1, \$, R)$. Then, after the first step of the Turing machine's execution on the input string $\omega = 0010$, the configuration looks like

and is represented by the string

 q_1010

• Suppose, as well, that $\delta(q_1, 0) = (q_1, 0, R)$. Then, after the second step of the Turing machine's execution on the input string $\omega = 0010$, the configuration looks like

and is represented by the string

 $0q_110$

• Suppose that $\delta(q_1, 1) = (q_2, \sqcup, L)$. Then, after the third step of the Turing machine's execution on the input string $\omega = 0010$, the configuration looks like

and is represented by the string

 $q_2 0 \sqcup 0$

An Example of Turing Machines

The first complete example of a Turing machine is a Turing machine

 $M_1 = (Q_1, \Sigma_1, \Gamma_1, \delta_1, q_0, q_{\text{accept}}, q_{\text{reject}})$

with the following transition diagram.

To keep the picture simple, the accept state is shown as " q_A " instead of q_{accept} , and transitions to the reject state, and this state, are left out — but

$$\delta(q,\sigma) = (q_{\mathsf{reject}},\sigma,\mathtt{R})$$

for $q = q_0$ and $\sigma = \sqcup$, for q = a, 2 and either $\sigma = b$ or $\sigma = \sqcup$, and for $q_{b,2}$ and either $\sigma = a$ or $\sigma = \sqcup$.