Lecture #10: Introduction to Turing Machines Lecture Presentation

Review of Preparatory Material

Continuing the First Example

Let $\Sigma = \{a, b\}$ and consider, once again, a Turing machine

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$

such that

$$Q = \{q_0, q_{a,1}, q_{a,2}, q_{b,1}, q_{b,2}, q_{accept}, q_{reject}\},$$

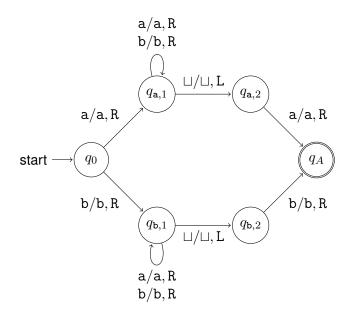
 $\Gamma=\{{\tt a},{\tt b},\sqcup\},$ and the transition function, $\delta,$ is given by the following transition table:

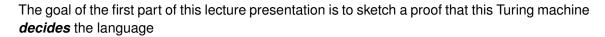
	a	Ъ	
q_0	$(q_{\mathtt{a},1},\mathtt{a},\mathtt{R})$	$(q_{\mathtt{b},1},\mathtt{b},\mathtt{R})$	$(q_{reject}, \sqcup, \mathtt{R})$
$q_{\mathtt{a},1}$	$(q_{\mathtt{a},1},\mathtt{a},\mathtt{R})$	$(q_{\mathtt{a},1},\mathtt{b},\mathtt{R})$	$(q_{\mathtt{a},2},\sqcup,\mathtt{L})$
$q_{\mathtt{a},2}$	$(q_{accept}, \mathtt{a}, \mathtt{R})$	$(q_{reject}, \mathtt{b}, \mathtt{R})$	$(q_{reject}, \sqcup, \mathtt{R})$
$q_{\mathtt{b},1}$	$q_{\mathtt{b},1},\mathtt{a},\mathtt{R})$	$q_{\mathtt{b},1},\mathtt{b},\mathtt{R})$	$(q_{b,2},\sqcup,L)$
$q_{\mathtt{b},2}$	$q_{reject}, \mathtt{a}, \mathtt{R})$	$(q_{accept}, \mathtt{b}, \mathtt{R})$	$(q_{reject}, \sqcup, \mathtt{R})$

This Turing machine can also be described using the following picture. To keep the picture simple the accepting state is shown as " q_A " instead of $q_{\rm accept}$, and transitions to the rejecting state, and this state, are left out — but, as the transition table indicates,

$$\delta(q, \sigma) = (q_{\mathsf{reject}}, \sigma, \mathsf{R})$$

for $q=q_0$ and $\sigma=\sqcup$, for $q=\mathtt{a},2$ and either $\sigma=\mathtt{b}$ or $\sigma=\sqcup$, and for $q_{\mathtt{b},2}$ and either $\sigma=\mathtt{a}$ or $\sigma=\sqcup$.





$$L = \{\omega \in \{a, b\}^* \mid |\omega| \ge 1 \text{ and } \omega \text{ begins, and ends, with the same letter}\}$$
$$= \{a, b\} \cup \{a\mu a \mid \mu \in \{a, b\}^*\} \cup \{b\mu b \mid \mu \in \{a, b\}^*\}.$$

Traces of Execution on Short Strings

Give a *trace of execution* to show that M *rejects* the empty string, λ :

Trace of Execution:

Give a *trace of execution* to show that M *accepts* a.

Trace of Execution:

Give a *trace of execution* to show that M *accepts* b.

Trace of Execution:

Longer Strings That Begin With "a"

Consider a string

$$\omega = \mathbf{a} \, \alpha_1 \alpha_2 \dots \alpha_n \in \Sigma^{\star}$$

where $n \geq 1$ and $\alpha_1, \alpha_2, \dots, \alpha_n \in \Sigma$ (so that $|\omega| = n + 1$).

Consider the following:

Lemma 1. For every integer i, if $0 \le i \le n$ then

$$q_0\omega \vdash^{\star} \mathsf{a}\,\alpha_1\alpha_2\ldots\alpha_i\,q_{\mathsf{a},1}\,\alpha_{i+1}\alpha_{i+1}\ldots\alpha_n.$$

Note: This asserts that

$$q_0\omega \vdash^\star \mathtt{a}\, q_{\mathtt{a},1}\alpha_1\alpha_2\dots \alpha_n$$

(because this is what is claimed for the case that i=0). It also asserts that

$$q_0\omega \vdash^{\star} \mathtt{a}\,\alpha_1\alpha_2\ldots,\alpha_n\,q_{\mathtt{a},1}$$

(because this is what is claimed for the case that i = n).

Proof of This Lemma:

Lemma 2. Suppose that

$$\omega=\mathtt{a}\,\mu\,\mathtt{a}$$

for a string $\mu \in \Sigma^{\star}$. Then M accepts ω .

Proof:

Lemma 3. Suppose that

$$\omega=\mathtt{a}\,\mu\,\mathtt{b}$$

for a string $\mu \in \Sigma^*$. Then M rejects ω .

Proof:

Longer Strings That Begin with "b"

Now consider a string

$$\omega = b \, \alpha_1 \alpha_2 \dots \alpha_n \in \Sigma^*$$

where $n \geq 1$ and $\alpha_1, \alpha_2, \dots, \alpha_n \in \Sigma$ (so that $|\omega| = n + 1$).

Things To Do Next:

- State, and prove, another lemma, "Lemma 4", that resembles Lemma 1 but that concerns the beginning of M's execution on a string that begins with "b" (like the above one) instead of a string that begins with "a".
- Use this to prove "Lemma 5" and Lemma 6", which are given below.

Lemma 5. Suppose that

$$\omega = b \mu b$$

for a string $\mu \in \Sigma^*$. Then M accepts ω .

Lemma 6. Suppose that

$$\omega=\mathrm{b}\,\mu\,\mathrm{a}$$

for a string $\mu \in \Sigma^*$. Then M rejects ω .

Completing a Proof That M Decides the Language L

Introduction to Turing Machine Design

It is recommended that, when designing a Turing machine for a given language by **starting at a high level** — picking an algorithm that can, eventually, by implemented using a Turing machine. It this not obvious you should continue by proving the correctness of the algorithm you will use.

With that noted, suppose, once again, that $\Sigma = \{a, b\}$, and let

$$\widehat{L} = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$$

— where $\mathbb N$ represents the set of *non-negative* integers, so that $0 \in \mathbb N$ and $\lambda \in \widehat{L}$.

Consider the following *algorithm* — which has a string $\omega \in \Sigma^*$ as input:

```
boolean isInL ( \omega : \Sigma^* ) {
1. if (\omega == \lambda) {
2. return true
3. } else if (\omega begins with "b") {
4. return false
5. } else if (|\omega| == 1) {
6. return false
7. } else if (\omega ends with "a") {
8. return false
  } else {
9. Let \mu \in \Sigma^* such that \omega = \mathbf{a} \cdot \mu \cdot \mathbf{b}. Return isInL(\mu)
  }
```

Consider, as well, the following claim:

Claim. Let $\omega \in \Sigma^{\star}$. If the algorithm isInL is executed on input ω then the execution halts after a finite number of executions of the steps shown in the algorithm. Furthermore, the algorithm returns true if $\omega \in \widehat{L}$ and the algorithm returns false if $\omega \notin \widehat{L}$.

Case: $\omega = \lambda$

Case: $|\omega|=1$

Case: $|\omega| \geq 2$

Subcase: $|\omega| \geq 2$ and ω begins, and ends, with "a"

Subcase: $|\omega| \geq 2$ and ω begins with "a" and ends with "b"

Subcase: $ \omega \geq 2$ and ω begins with "b"	
Based On The Above: What Proof Technique Can Be Used To Prove This Claim	?

What Will Happen Next