Nonregular Languages, Part Two Supplement for Preparatory Viewing

Closure Properties

If $L_1, L_2 \subseteq \Sigma^*$ for some alphabet Σ , and L_1 and L_2 are both regular languages, then the following languages are regular languages as well.

- (a) $L_1 \cup L_2$
- (b) $L_1 \circ L_2$
- (c) L_1^{\star}
- (d) L_1^C

Closure Properties (Flipped Around)

Since $P \Longrightarrow Q$ implies that $\neg Q \Longrightarrow \neg P$, the above closure properties imply the following.

- (a) For all languages $L_1, L_2 \subseteq \Sigma^*$, for any alphabet Σ , if $L_1 \cup L_2$ is **not** a regular language then *at least one* of L_1 or L_2 is **not** a regular language either.
- (b) For all languages $L_1, L_2 \subseteq \Sigma^*$, for any alphabet Σ , if $L_1 \circ L_2$ is **not** a regular language, then *at least one* of L_1 or L_2 is **not** a regular language either.
- (c) For every language $L \subseteq \Sigma^*$ over any alphabet Σ , if L^* is **not** a regular language then L is **not** a regular language either.
- (d) For every language $L \subseteq \Sigma^*$ over any alphabet Σ , if L^C is **not** a regular language then L is **not** a regular language either.