Lecture #9: Nonregular Languages, Part Two What Will Happen During the Lecture

Review

The lecture presentation will begin with a **brief** review of the material in the preparatory video and documents for this lecture — and students will have the chance to ask questions about this.

Problems To Be Solved

1. Let $\Sigma = \{a, b\}$. Using one or more the *closure properties* for regular languages, that have now been discussed in class, we will show that the language

 $L=\{\omega\in\Sigma^\star\mid \text{the number of a's in }\omega\text{ is equal to the number of b's in }\omega\}\subseteq\Sigma^\star$ is not a regular language.

- 2. In order to have *another* closure property that can be used to prove that languages are not regular, we will prove the following: For every alphabet Σ and for languages $L_1, L_2 \subseteq \Sigma^*$, if L_1 is a regular language and L_2 is a regular language then their *intersection*, $L_1 \cap L_2$, is also a regular language.
- 3. It there is time then the above closure property will be used to provide a *different* proof that the language L, introduced in Problem #1, is not a regular language.