Lecture #8: Nonregular Languages, Part One Proof of the Pumping Lemma

Note: This supplemental document is for interest only (for students wishing to know how the Pumping Lemma can be proved): Students will not be expected to understand the proof of the Pumping Lemma in order to apply it, or to do well in this course.

Claim (Pumping Lemma). Let Σ be an alphabet and let $A \subseteq \Sigma^{\star}$.

If A is a regular language, then there is a number $p \geq 1$ (called the **pumping length** for A) — which only depends on A — such that if s is any string in A with length at least p, then s can be divided into three pieces s = xyz (for $x, y, z \in \Sigma^{\star}$), satisfying the following three conditions.

- 1. $xy^iz \in A$ for every integer i such that $i \geq 0$.
- 2. |y| > 0 (so that $y \neq \lambda$).
- 3. $|xy| \le p$.

Proof. Let $A \subseteq \Sigma^*$ be a regular language.

Then there exists a *deterministic finite automaton*

$$M = (Q, \Sigma, \delta, q_0, F)$$

with language A.

Let p = |Q| — the number of states in M — so that p is a positive integer that depends on A (but not on anything else that is introduced, after this, in this proof).

Either A does not include any strings $S \in \Sigma^*$ with length at least p, or A includes at least one such string. These cases are considered next.

- Case: A does not include any strings $s \in \Sigma^\star$ with length at least p.

 In this case there is nothing more that we need to prove because the claim only said something strings $s \in A$ such that $|s| \geq p$ (and no such strings exist).
- Case: A includes at least one string $s \in \Sigma^*$ with length at least p. Let s be some string in Σ^* such that $s \in A$ and $|s| \ge p$. It is necessary (and sufficient) to show that it is possible to write s as xyz (for $x,y,z \in \Sigma^*$) such that

- 1. $xy^iz \in A$ for every positive integer i.
- 2. |y| > 0 (so that $y \neq \lambda$).
- 3. $|xy| \le p$.

Let m = |s|, so that $m \ge p$, and suppose that

$$s = \alpha_1 \alpha_2 \dots \alpha_m$$

for $\alpha_1, \alpha_2, \ldots, \alpha_m \in \Sigma$.

Let $r_0, r_1, r_2, \dots, r_m$ be the sequences of states visited as s is processed — so that $r_0 = q_0 = \delta^*(q_0, \lambda)$, and

$$r_i = \delta^{\star}(q_0, \alpha_1 \alpha_2 \dots \alpha_i)$$

for $1 \le i \le m$.

Consider the *first* p + 1 states in this sequence,

$$r_0, r_1, r_2, \dots r_p,$$

which are visited as the prefix $\alpha_1 \alpha_2 \dots \alpha_p$ of s, with length p, is processed.

Since |Q|=m=p and the above sequence of states has length p+1, these states cannot all be distinct — so that *at least* one state $\widehat{q}\in Q$ must appear *at least twice* in the above sequence.

Now let $\widehat{q} \in Q$ be a state that *does* appear at least twice in the sequence $r_0, r_1, r_2, \ldots, r_p$. Suppose i and j are integers such that \widehat{q} first appears as r_i in this sequence and then appears for the second time in the sequence as r_j —so that $0 \le i < j \le p$.

- Let $x = \alpha_1 \alpha_2 \dots \alpha_i \in \Sigma^*$. Then x is the prefix of s with length i and

$$\delta^{\star}(q_0, x) = \delta^{\star}(q_0, \alpha_1 \alpha_2 \dots \alpha_i) = r_i = \widehat{q},$$

since \hat{q} is the state that is reached after processing the first i symbols in s.

- Let $y = \alpha_{i+1}\alpha_{i+2}\dots\alpha_j$, the substring of s including the next j-i symbols after the prefix x. Then, $\delta^*(q_0,x) = \widehat{q}$ — as noted above — and since

$$\delta^{\star}(q_0, xy) = \delta^{\star}(q_0, \alpha_1 \alpha_2 \dots \alpha_j) = r_j = \widehat{q}$$

as well,

$$\delta^{\star}(\widehat{q},y) = \delta^{\star}(r_i,\alpha_{i+1}\alpha_{i+2}\dots\alpha_j) = r_j = \widehat{q}$$

as well: Processing the next j-i symbols in s moves M from state \widehat{q} back to itself.

- Finally, set $z = \alpha_{j+1}\alpha_{j+2}\dots\alpha_m$ - so that $x,y,z\in\Sigma^*$ and s=xyz. Since $s\in A$,

$$\delta^{\star}(q_0, s) = \delta^{\star}(q_0, xyz) = q_F$$

for some *accepting* state $q_F \in F$. Now, since $\delta^{\star}(q_0, xy) = \widehat{q}$, as noted above,

$$\delta^{\star}(\widehat{q},z) = \delta^{\star}(\widehat{q},\alpha_{j+1}\alpha_{j+2}\dots\alpha_m) = q_F,$$

that is, processing the final m-s symbols in s takes M from state \widehat{q} to the accepting state q_F .

Once again consider the above properties 1, 2, and 3.

1. Since $\delta^{\star}(\widehat{q},y)=\widehat{q}$, as noted above, it is easily proved by induction on i that

$$\delta^{\star}(\widehat{q}, y^i) = \widehat{q}$$

for every integer i, such that $i \geq 0$, as well. Consequently, if i is a non-negative integer then

$$\begin{split} \delta^{\star}(q_0, xy^i z) &= \delta^{\star}(\widehat{q}, y^i z) \\ &= \delta^{\star}(\widehat{q}z) \\ &= q_F \in F \end{split} \qquad \begin{array}{l} (\text{since } \delta^{\star}(q_0, x) = \widehat{q}) \\ (\text{since } \delta^{\star}(\widehat{q}, y^i) = \widehat{q}) \\ (\text{as noted above}). \end{split}$$

Thus $xy^iz \in A$, since M accepts this string.

Since i was an arbitrarily chosen non-negative integer it follows that $xy^iz \in A$ for *every* non-negative integer i. That is, property 1 is satisfied.

- 2. Since $y = \alpha_{i+1}\alpha_{i+2}\dots, \alpha_j$, |y| = j i > 0 (and $y \neq \lambda$). That is, property 2 is also satisfied.
- 3. Finally, since $xy = \alpha_1 \alpha_2 \dots \alpha_i \cdot \alpha_{i+1} \alpha_{i+2} \dots \alpha_j = \alpha_1 \alpha_2 \dots \alpha_j$, $|xy| = j \le p$: Property 3 is satisfied as well.

Since A was an arbitrarily chosen regular language, this establishes the Pumping Lemma.