
Lecture #8: Nonregular Languages, Part One

Proof of the Pumping Lemma

Note: This supplemental document is for interest only (for students wishing to know how the

Pumping Lemma can be proved): Students will not be expected to understand the proof of the

Pumping Lemma in order to apply it, or to do well in this course.

Claim (Pumping Lemma). Let Σ be an alphabet and let A ⊆ Σ⋆.

If A is a regular language, then there is a number p ≥ 1 (called the pumping length for A) —

which only depends on A — such that if s is any string in A with length at least p, then s can

be divided into three pieces s = xyz (for x, y, z ∈ Σ⋆), satisfying the following three conditions.

1. xyiz ∈ A for every integer i such that i ≥ 0.

2. |y| > 0 (so that y 6= λ).

3. |xy| ≤ p.

Proof. Let A ⊆ Σ⋆ be a regular language.

Then there exists a deterministic finite automaton

M = (Q,Σ, δ, q0, F )

with language A.

Let p = |Q| — the number of states in M — so that p is a positive integer that depends on A

(but not on anything else that is introduced, after this, in this proof).

Either A does not include any strings S ∈ Σ⋆ with length at least p, or A includes at least one

such string. These cases are considered next.

• Case: A does not include any strings s ∈ Σ⋆ with length at least p.

In this case there is nothing more that we need to prove — because the claim only said

something strings s ∈ A such that |s| ≥ p (and no such strings exist).

• Case: A includes at least one string s ∈ Σ⋆ with length at least p.

Let s be some string in Σ⋆ such that s ∈ A and |s| ≥ p. It is necessary (and sufficient) to

show that it is possible to write s as xyz (for x, y, z ∈ Σ⋆) such that
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1. xyiz ∈ A for every positive integer i.

2. |y| > 0 (so that y 6= λ).

3. |xy| ≤ p.

Let m = |s|, so that m ≥ p, and suppose that

s = α1α2 . . . αm

for α1, α2, . . . , αm ∈ Σ.

Let r0, r1, r2, . . . , rm be the sequences of states visited as s is processed — so that

r0 = q0 = δ⋆(q0, λ), and

ri = δ⋆(q0, α1α2 . . . αi)

for 1 ≤ i ≤ m.

Consider the first p+ 1 states in this sequence,

r0, r1, r2, . . . rp,

which are visited as the prefix α1α2 . . . αp of s, with length p, is processed.

Since |Q| = m = p and the above sequence of states has length p + 1, these states

cannot all be distinct — so that at least one state q̂ ∈ Q must appear at least twice in

the above sequence.

Now let q̂ ∈ Q be a state that does appear at least twice in the sequence r0, r1, r2, . . . , rp.

Suppose i and j are integers such that q̂ first appears as ri in this sequence and then

appears for the second time in the sequence as rj — so that 0 ≤ i < j ≤ p.

– Let x = α1α2 . . . αi ∈ Σ⋆. Then x is the prefix of s with length i and

δ⋆(q0, x) = δ⋆(q0, α1α2 . . . αi) = ri = q̂,

since q̂ is the state that is reached after processing the first i symbols in s.

– Let y = αi+1αi+2 . . . αj , the substring of s including the next j− i symbols after the

prefix x. Then, δ⋆(q0, x) = q̂ — as noted above — and since

δ⋆(q0, xy) = δ⋆(q0, α1α2 . . . αj) = rj = q̂

as well,

δ⋆(q̂, y) = δ⋆(ri, αi+1αi+2 . . . αj) = rj = q̂

as well: Processing the next j− i symbols in s moves M from state q̂ back to itself.
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– Finally, set z = αj+1αj+2 . . . αm — so that x, y, z ∈ Σ⋆ and s = xyz. Since s ∈ A,

δ⋆(q0, s) = δ⋆(q0, xyz) = qF

for some accepting state qF ∈ F . Now, since δ⋆(q0, xy) = q̂, as noted above,

δ⋆(q̂, z) = δ⋆(q̂, αj+1αj+2 . . . αm) = qF ,

that is, processing the final m−s symbols in s takes M from state q̂ to the accepting

state qF .

Once again consider the above properties 1, 2, and 3.

1. Since δ⋆(q̂, y) = q̂, as noted above, it is easily proved by induction on i that

δ⋆(q̂, yi) = q̂

for every integer i, such that i ≥ 0, as well. Consequently, if i is a non-negative

integer then

δ⋆(q0, xy
iz) = δ⋆(q̂, yiz) (since δ⋆(q0, x) = q̂ )

= δ⋆(q̂z) (since δ⋆(q̂, yi) = q̂ )

= qF ∈ F (as noted above).

Thus xyiz ∈ A, since M accepts this string.

Since i was an arbitrarily chosen non-negative integer it follows that xyiz ∈ A for

every non-negative integer i. That is, property 1 is satisfied.

2. Since y = αi+1αi+2 . . . , αj , |y| = j − i > 0 (and y 6= λ). That is, property 2 is also

satisfied.

3. Finally, since xy = α1α2 . . . αi · αi+1αi+2 . . . αj = α1α2 . . . αj , |xy| = j ≤ p:

Property 3 is satisfied as well.

Since A was an arbitrarily chosen regular language, this establishes the Pumping Lemma.
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