Lecture #8: Nonregular Languages, Part One Proving That a Language is Not Regular — Another Example Let $\Sigma = \{0, 1\}$. The *reversal* of a string $$\omega = \sigma_1 \sigma_2 \dots \sigma_n$$ is the string $$\omega^R = \sigma_n \dots \sigma_2 \sigma_1$$ obtained by listing the symbols in ω in reverse order. Thus $\lambda^R=\lambda$, $0^R=0$, and $001^R=100$. Note that if $\omega\in\Sigma^\star$ then $\omega^R\in\Sigma^\star$ as well. Furthermore ω and ω^R always have the same length. They also contain the number of 0's and the same number of 1's. Suppose that $L_2 = \{\omega \cdot \omega^R \mid \omega \in \Sigma^*\}$. Then L_2 includes λ , 00, 001100 and lots of other strings, but not 10, 0010, or any string with odd length. **Claim.** L_2 is not a regular language. *Proof.* Suppose, to obtain a contradiction, that L_2 is not a regular language. Then it follows, by the Pumping Lemma for Regular Languages, that there is a number $p \ge 1$ such that if s is any string in L_2 with length at least p, then s can be divided into three pieces s = xyz (for $x, y, z \in \Sigma^*$), satisfying the following three conditions. - 1. $xy^iz \in L_2$ for every integer i such that $i \geq 0$. - 2. |y| > 0 (so that $y \neq \lambda$). - 3. $|xy| \le p$. Consider the string $s = 0^p 110^p$. - $s \in L_2$ since $s = \omega \cdot \omega^R$ for the string $\omega = \mathbf{0}^p \mathbf{1} \in \Sigma^{\star}$. - |s| = 2p + 2 > p. It follows that s=xyz for strings $x,y,z\in\Sigma^{\star}$ for strings $x,y,z\in\Sigma^{\star}$ that satisfy properties #1–#3, above. - Since xy is a prefix of s with length at most p (by property #3), and the first p symbols of s are all copies of "0", $xy = 0^k$ for some integer k such that $0 \le k \le p$. Since $s = 0^p 110^p = xyz = 0^k z$, it follows that $z = 0^{p-k} 110^p$. - By property #2, |y|>0, so that $y\neq \lambda$. Thus (since |xy|=|x|+|y|=k, |x|=h and $|y|=\ell$ for integers h and ℓ such that $h\geq 0,\,\ell\geq 1$, and $h+\ell=k$. - Since $xy = 0^k$ it now follows that $x = 0^h$ and $y = 0^\ell$. - Let i=2. Then $$xy^{i}z = xy^{2}z = xyyz = 0^{h}0^{\ell}0^{\ell}0^{p-k}110^{p} = 0^{p+\ell}110^{k},$$ (1) since $h + \ell = k$ — and it follows, by property #1, above, that this string is in the language L_2 . Now, if ℓ is odd then it is impossible for xy^2z to belong to L_2 , because the length $(2p+2+\ell)$ of this string is odd and, as noted above, L_2 only contains strings with even length. The integer ℓ must, therefore, be even. Since $\ell \geq 1$, it now follows that $\ell \geq 2$. Furthermore, one can see by the equation at line (1) that the string xy^2z has length $2p+\ell+2=2(p+\ell/2+1)$. Since $xy^2z\in L_2$, it must be the case that $$xy^2 2 = \omega \cdot \omega^R \tag{2}$$ for some string $\omega \in \Sigma^*$. Since ω and its reversal have the same length, the length of ω must be one-half the length of xy^2z , that is, $p + \ell/2 + 1$. Thus ω is the **prefix** of xy^2z with this length. Now, since $\ell \geq 2$, $1 \leq \ell/2$, and the length of ω is $p + \ell/2 + 1 \leq p + \ell/2 + \ell/2 = p + \ell$. Since ω is a prefix of xy^2z and (again, by the equation at line (1)) the first $p + \ell$ symbols in sy^2z are all copies of "0", it must be the case that $\omega = 0^{p+\ell/2+1}$. However, ω^R must be the string $\mathbf{0}^{p+\ell/2+1}$ as well, so that $$\omega \cdot \omega^R = 0^{p+\ell/2+1} \cdot 0^{p+\ell/2+1} = 0^{2(p+\ell/2+1)} = 0^{2p+\ell+2} \neq 0^p 110^p = xy^2z.$$ This *contradicts* the equation at line (2), above, and it follows, by this contradiction, that the assumption in this proof must be false. Thus L_2 is not a regular language, as claimed.