Lecture #7: Regular Operations and Regular Expressions Key Concepts

Regular Operations

This lecture introduced the *regular operations* (union, concatenation, and Kleene star) on languages. Let Σ be an alphabet and let $A,B\subseteq \Sigma^{\star}$, so that A and B are *languages* with alphabet Σ .

• The *union* of the languages A and B is the language

$$A \cup B = \{ \omega \in \Sigma^* \mid \omega \in A \text{ or } \omega \in B \text{ (or both)} \}.$$

• The *concatenation* of the languages A and B is the language

$$A \circ B = \{\omega_1 \cdot \omega_2 \mid \omega_1 \in A \text{ and } \omega_2 \in B\}.$$

• The *Kleene star* of the language A is the language

$$A^* = \{\omega_1 \cdot \omega_2 \dots \omega_k \mid k > 0 \text{ and } \omega_i \in A \text{ for } 1 < i < k\}$$

This language is also, sometimes called the *Kleene closure* of A — or the *star* of A.

Closure Properties

A *closure property* for a set S of languages over an alphabet Σ , is a property stating — for an *operation* on languages over Σ — that if the operation is applied to languages that all belong to the set S, then the result is a language that belongs to the set S, as well. The following result describes several closure properties for the set of regular languages.

Theorem 1. Let Σ be an alphabet, and let $A, B \subseteq \Sigma^*$.

- (a) If A and B are regular languages then $A \cup B$ is a regular language, as well.
- (b) If A and B are regular languages, then $A \circ B$ is a regular language, as well.
- (c) If A is a regular language then A^* is a regular language as well.

Regular Expressions and Their Languages

Let Σ be an alphabet that *does not* include any of the symbols

$$\lambda, \emptyset, \Sigma, (,), \cup, \circ, \star$$

and let

$$\Sigma_{\text{regexp}} = \Sigma \cup \{\lambda, \emptyset, "\Sigma", (,), \cup, \circ, ^{\star}\}$$

so that Σ_{regexp} incldes a copy of the *symbol*, " Σ ", that we are also using as the name of the language we are starting with.

A *regular expression over the alphabet* Σ is a kind of string of symbols, in $\Sigma_{\text{regexp}}^{\star}$, as defined by the following list of seven rules — and he *language of a regular expression*, *over the alphabet* Σ , is a subset of Σ^{\star} that is defined as follows, as well.

- 1. For every **symbol** $\sigma \in \Sigma$, the **string** σ , with length one in $\Sigma_{\text{regexp}}^{\star}$ is a regular expression over Σ . The **language**, $L(\sigma)$, of the regular expression σ , is the **set** $\{\sigma\}$.
- 2. The *string* λ , with length one in $\Sigma_{\text{regexp}}^{\star}$, is a regular expression over Σ . The *language*, $L(\lambda)$, of the regular expression λ , is the *set* $\{\lambda\}$.
- 3. The **string** \emptyset , with length one in $\Sigma_{\text{regexp}}^{\star}$ is a regular expression over Σ . The **language**, $L(\emptyset)$, of the regular expression \emptyset , is the **set** \emptyset .
- 4. The **string** Σ , with length one in $\Sigma_{\text{regexp}}^{\star}$, is a regular expression over (the alphabet) Σ . The **language**, $L(\Sigma)$, of the regular expression Σ , is the **finite set** Σ .
- 5. If $R_1 \in \Sigma_{\text{regexp}}^{\star}$ and $R_2 \in \Sigma_{\text{regexp}}^{\star}$ are **regular expressions over** Σ then the **string**

$$(R_1 \cup R_2) \tag{1}$$

(of symbols in Σ_{regexp}) is a regular expression over Σ . The *language* L(R), of the regular expression R at line (1), is the *set*

$$L(R_1) \cup L(R_2)$$
.

6. If $R_1 \in \Sigma_{\text{regexp}}^{\star}$ and $R_2 \in \Sigma_{\text{regexp}}^{\star}$ are **regular expressions over** Σ then the **string**

$$(R_1 \circ R_2) \tag{2}$$

(of symbols in Σ_{regexp}) is a regular expression over Σ . The *language* L(R), of the regular expression R at line (2), is the *set*

$$L(R_1) \circ L(R_2)$$
.

7. If $R_1 \in \Sigma_{\mathsf{regexp}}^{\star}$ is a **regular expression over** Σ then the **string**

$$(R_1)^*$$
 (3)

(of symbols in Σ_{regexp}) is a regular expression over Σ . The *language* L(R), of the regular expression R at line (3), is the *set*

$$L(R_1)^*$$

Theorem 2. Let Σ be an alphabet that does not include any of the symbols " λ ", " \emptyset ", " Σ ", "(", ")", " \cup ", " \circ ", or " \star ", and let $L \subseteq \Sigma^{\star}$.

Then L is a **regular language** if and only if there exists a regular expression R, over the alphabet Σ , such that L = L(R).

Note: Regular expressions are strings of text that can be used to describe languages in pseudocode and code — and these have significant applications in system software and knowledge representation. If there was more time in this course, then quite a bit of the extra time would be devoted to regular expressions and their processing. Some of the information that would be included, if time was available, is given in the *optional* supplemental documents for this lecture.