
Lecture #7: Regular Operations and Closure Properties of

Regular Language

Proof of Equivalence Claim

This document includes a proof of the following result, which was included in the notes for

Lecture #7.

Theorem 2. Let Σ be an alphabet. Then a language L ⊆ Σ⋆ is a regular language if and only

if L is the language of a regular expression over Σ.

An Easy Direction

One part of this claim is reasonably easy to establish using closure properties that were also

stated in the notes for Lecture #7 and proved in another supplemental document for this lecture

(“Proofs of Closure Properties”).

Lemma 1. Let Σ be an alphabet and let R be a regular expression over Σ. Then the language,

L(R), of the regular expression R is a regular language.

Proof. Since R is a regular expression it is a string — over an alphabet that includes Σ along

with a small number of additional symbols. The result will be proved by induction on the length

of the string R, using the strong form of mathematical induction.

Since the empty string is not a regular expression,1 regular expressions with length 1 will be

considered in the basis.

Basis: Let R be a regular expression over Σ with length one. Then it follows, by the definition

of a “regular expression”, that one of the following cases must hold.

• R is the symbol “σ” for some symbol σ ∈ Σ.

1The string “λ”, which represents the empty string, is not the empty string, itself: It is a nonempty string with

length 1.
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• R is the symbol “λ” (which represents the empty string).

• R is the symbol “∅” (which represents the empty set).

• R is the symbol “Σ” (which represents the alphabet Σ).

Each of these cases is considered separately below.

• Case: R is the symbol “σ” for some symbol σ ∈ Σ.

As observed in the lecture notes, L(R) = L(σ) = {σ} — and this is a regular language,

since it is the language of the nondeterministic finite automaton

q0start q1
σ

• Case: R is the symbol “λ” (which represents the empty string).

As observed in the lecture notes, L(R) = L(λ) = {λ} — and this is a regular language,

since it is the language of the nondeterministic finite automaton

q0start

• Case: R is the symbol “∅” (which represents the empty set).

As observed in the lecture notes, L(R) = L(∅) = ∅ — and this is a regular language,

since it is the language of the nondeterministic finite automaton

q0start

• Case: R is the symbol “Σ” (which represents the alphabet Σ).

Since Σ is an alphabet,

Σ = {σ1, σ2, . . . , σn}

for some positive integer n and (distinct) symbols σ1, σ2, . . . , σn. Then, as observed

in the lecture notes, L(R) = L(Σ) = Σ = {σ1, σ2, . . . , σn} — and this is a regular

language, since it is the language of the nondeterministic finite automaton

q0start q1
σ1, σ2, . . . , σn
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Thus if R is a regular expression over Σ whose length (as a string) is 1 then L(R) is a regular

language, as claimed.

Inductive Step: Let k be an integer such that k ≥ 1. It is necessary and sufficient to use the

following

Inductive Hypothesis: Let R be a regular expression over Σ whose length (as a

string) is ℓ, for an integer ℓ such that 1 ≤ ℓ ≤ k. Then the language, L(R), of R is

a regular language.

to prove the following

Inductive Claim: Let R be a regular expression over Σ whose length (as a string)

is k + 1. Then the language, L(R), of R is a regular language.

With that noted, let R be a regular expression over R whose length (as a string) is k+1. Since

k ≥ 1, k + 1 ≥ 2, and it follows by the definition of a “regular expression” that one of the

following cases must hold.

• R is the string “(R1 ∪R2)” where R1 and R2 are regular expressions over Σ.

• R is the string “(R1 ◦R2)” where R1 and R2 are regular expressions over Σ.

• R is the string “ (R1)
⋆ ” where R1 is a regular expression over Σ.

Each of these cases is considered separately below.

• Case: R is the string “(R1 ∪R2)” where R1 and R2 are regular expressions over Σ.

Then the language, L = L(R), of the regular expression R, is L1 ∪ L2, where L1 ⊆ Σ⋆

is the language of the regular expression R1 and L2 ⊆ Σ⋆ is the language of the regular

expression R2.

Since R1 and R2 are regular expressions over Σ they are each strings with length at

least 1. On the other hand, R1 is a substring of R which does not include at least four of

the symbols in R, namely the left and right brackets, symbol “∪” for union, and at least

one symbol in R2. Thus the length of R1 is at most (k + 1) − 4 = k − 3. Switching the

roles of R1 and R2 one can argue that the length of R2 is at most k − 3 as well.

Thus R1 and R2 are both strings over Σ with lengths between 1 and k− 3, and it follows

by the Inductive Hypothesis that the languages L1 = L(R1) ⊆ Σ⋆ and L2 = L(R2) ⊆ Σ⋆

are both regular languages.

Theorem #1, part (a), from the lecture notes, now implies that L = L1 ∪ L2 is a regular

language too.
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• Case: R is the string “(R1 ◦R2)” where R1 and R2 are regular expressions over Σ.

Then the language, L = L(R), of the regular expression R, is L1 ◦ L2, where L1 ⊆ Σ⋆

is the language of the regular expression R1 and L2 ⊆ Σ⋆ is the language of the regular

expression R2.

The argument given at the beginning of the previous case can be applied here (with the

symbol for union, “∪”, replaced with the symbol for concatenation, “◦”) to argue that R1

and R2 are each regular expressions over Σ with length between 1 and k − 3. Once

again, it follows by the Inductive Hypothesis that the languages L1 = L(R1) ⊆ Σ⋆ and

L2 = L(R2) ⊆ Σ⋆ are both regular languages.

Theorem #1, part (b), from the lecture notes, now implies that L = L1 ◦ L2 is also a

regular language.

• Case: R is the string “ (R1)
⋆ ” where R1 is a regular expression over Σ.

Then the language, L = L(R), of the regular expression R is L⋆
1, where L1 ⊆ Σ⋆ is the

language of the regular expression R1.

Since R1 is a regular expression over Σ it is a string with length at least 1. One the

other hand, R1 is a substring of R that does not include at least three symbols, namely

the left and right brackets and the “star” symbol, “ ⋆ ”. Thus the length of R1 is at most

(k + 1)− 3 = k − 2.

It now follows by the Inductive Hypothesis that the language L1 = L(R1) ⊆ Σ⋆ is a

regular language.

Theorem #1, part (c), from the lecture notes, now implies that L = L⋆
1 is a regular

language, as well.

Thus L = L(R) is a regular language in every case. Since R is an arbitrarily chosen regular

expression over Σ with length k + 1, this establishes the Inductive Claim — as needed to

complete the Inductive Step.

The claim now follows by induction on the length of the regular expression R.

A More Challenging Direction

It is somewhat more challenging to prove that every regular language L ⊆ Σ⋆ is also the

language of a regular expression over Σ. In order to do this, yet another kind of finite state

machine, called a generalized nondeterministic finite automaton, will be introduced. Then

properties of these machines will be stated, proved, and used to establish this result.
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Generalized Nondeterministic Finite Automata

A generalized nondeterministic finite automaton (GNFA)

M = (Q,Σ, δ, q0, qaccept)

is yet another kind of “finite state machine:”

• As usual, Σ is the machine’s alphabet , and the machine processes strings in Σ⋆.

• As usual, M has a finite set Q of states — which includes a start state q0.

• Q also includes a single accepting state qaccept ∈ Q, which is different from q0.

• For every state q ∈ Q \ {qaccept} (that is, for each state except qaccept) and for every state

r ∈ Q \ {q0} (that is, for every state except q0) there is a transition from q to r that is

labelled by some regular expression Rq,r over the alphabet Σ.

In other words, the transition function is a total function

δ : (Q \ {qaccept})× (Q \ {q0}) → RΣ

where RΣ is the set of regular expressions over the alphabet Σ.

The GNFA M accepts a string ω ∈ Σ if and only if there is a sequence

r0, r1, r2, . . . , rm

of the states in Q such that r0 = q0, r1, r2, . . . , rm−1 ∈ Q \ {q0, qaccept}, rm = qaccept, and

ω = ω0ω1 . . . , ωm−1

where ωi is in the language of the regular expression Ri,i+1 = δ(ri, ri+1) labelling the transition

from ri to ri+1, for 0 ≤ i ≤ m− 1.

The language L(M) of a GNFA M is a subset of Σ⋆, namely, the set of strings ω ∈ Σ⋆ such

that M accepts ω (as defined above).

Lemma 2. Let L ⊆ Σ⋆, for an alphabet Σ. If L is a regular language then there exists a

generalized nondeterministic finite automaton M = (Q,Σ, δ, q0, qaccept), with alphabet Σ, such

that L = L(M).

Sketch of Proof. Let L ⊆ Σ⋆, for an alphabet Σ, such that L is a regular language. Then —

as established (as “Lemma 2”) in the supplemental document, “Proofs of Closure Properties”,

L = L(M̂ ) for some nondeterministic finite automaton

M̂ = (Q,Σ, δ̂, q0, F )

which satisfies the following additional properties.
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• There are no transitions into q0 at all. That is, q0 /∈ δ̂(q, σ) for any state q ∈ Q or any

symbol σ ∈ Σλ, so that the only string ω ∈ Σ⋆ such that q0 ∈ δ̂⋆(q0, ω) is the empty

string, ω = λ.

• M̂ has exactly one accepting state, qaccept, and there are no transitions out of this state.

That is, F = {qaccept} and δ̂(qaccept, σ) = ∅ for every symbol σ ∈ Σλ.

As the above notation may suggest, let us consider a generalized nondeterministic finite au-

tomaton

M = (Q,Σ, δ, q0, qaccept)

with the same alphabet Σ and the same set Q of states as the nondeterministic finite automa-

ton, M , has. M ’s start state is the same state, q0, as for M̂ , and M ’s accepting state is the

state qaccept ∈ Q that belongs to M̂ ’s set, F , of accepting states.

In order to define the transition function δ : (Q \ {qaccept}) × (Q \ {q0}) → RΣ, let q, r ∈ Q
such that q 6= qaccept and r 6= q0, and let

Sq,r ⊆ Σλ

be the set of symbols σ ∈ Σλ such that r ∈ δ(q, σ). Let Rq,r be the regular expression over Σ
that is defined as follows.

• If Sq,r = ∅ then Rq,r is the regular expression “∅”.

• If |Sq,r| = 1, so that Sq,r = {σ} for some symbol σ ∈ Σλ, then Rq,r is the regular

expression “σ”.

• Otherwise |Sq,r| = k for some integer k such that k ≥ 2. Suppose that

Sq,r = {α1, α2, . . . , αk}

where α1, α2, . . . , αk ∈ Σλ. Let r2 be the regular expression “(α1∪α2)”, so that L(r2) =
{α1, α2}, and, for 2 ≤ ℓ ≤ k − 1, let rℓ+1 be the regular expression2

(rℓ ∪ αℓ+1).

Then it is easily shown by induction on ℓ that, for 2 ≤ ℓ ≤ k, rℓ is a regular expression

whose language is the set

{α1, α2, . . . .αℓ}.

Set Rq,r to be the regular expression rk, so that the language of Rq,r is the set Sq,r.

2For example, if k ≥ 3 then r3 is the regular expression “((α1 ∪ α2) ∪ α3)” and if k ≥ 4 then r4 is the regular

expression “(((α1 ∪ α2) ∪ α3) ∪ α4)”.
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Now set δ(q, r) to be the regular expression Rq,r for each pair of states q ∈ Q \ {qaccept} and

r ∈ Q \ {q0}. Then δ is a total function from (Q \ {qaccept})× (Q \ {q0}) to RΣ, as needed to

complete the definition of the generalized nondeterministic finite automaton M .

The following is now easily established by induction on ℓ: For every string ω ∈ Σ⋆, for every

positive integer ℓ, and for every sequence of states

r0, r1, r2, . . . , rℓ

in Q, where r0 = q0, ri ∈ Q \ {q0, qaccept} for 1 ≤ i ≤ ℓ − 1, and rℓ ∈ Q \ {q0}, the following

conditions are equivalent:

(a) There exists a sequence of strings ω1, ω2, . . . , ωℓ ∈ Σ⋆ such that ωi ∈ L(Rri−1,ri) =
L(δ(ri−1, ri)) for 1 ≤ i ≤ ℓ, and such that

ω = ω1 · ω2 . . . ωℓ.

(b) There exists a sequence of strings (with length at most one) ω1, ω2, . . . , ωℓ ∈ Σλ such that

ri ∈ δ̂(ri−1, ωi) for 1 ≤ i ≤ ℓ, and such that

ω = ω1 · ω2 . . . ωℓ.

Once this result has been established it can be applied to show that M accepts ω if and

only if M̂ accepts ω. Thus L = L(M̂ ) = L(M), so that L is the language of a generalized

nondeterministic finite automaton, as needed to establish the claim.

State Reduction

Suppose, now, that Σ is an alphabet,

M = (Q,Σ, δ, q0, qaccept)

is a generalized nondeterministic finite automaton such that |Q| = k ≥ 3, and let q ∈ Q such

that q 6= q0 and q 6= qaccept. Let Q̂ = Q \ {q}, so that Q̂ includes k − 1 states, and let

M̂ = (Q̂,Σ, δ̂, q0, qaccept)

where δ̂ is a total function from (Q̂ \ {qaccept}) × (Q̂ \ {q0}) to RΣ such that, for every pair of

states r, s ∈ Q̂ such that r 6= qaccept and s 6= q0, δ̂(r, s) is the regular expression

(δ(r, s) ∪ ((δ(r, q) ◦ (δ(q, q))⋆) ◦ δ(q, s))). (1)
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Notice that if ω ∈ Σ⋆ such that ω is in the language of the above regular expression then either

ω is in the language of the regular expression δ(r, s) — so that one can go directly from state r
to state s in M by processing the string ω — or ω is in the language of the regular expression

((δ(r, q) ◦ (δ(q, q))⋆) ◦ δ(q, s))

— so that one can go indirectly from state r to state s in M by processing a prefix of ω to apply

a transition from state r to state q; processing zero or more substrings of ω to apply transitions

from state q to itself; and then process a suffix of ω to apply a transition from q to s.

Lemma 3. Let Σ, M , and M̂ be as above. The following property is satisfied for every positive

integer k: For every sequence

q0 = r0, r1, r2, . . . , rk

of states such that ri ∈ Q \ {q0, qaccept} for 1 ≤ i ≤ k − 1 and rk ∈ Q \ {q0, q}, and for

every string ω ∈ Σ⋆, if there exist strings ω1, ω2, . . . , ωk ∈ Σ⋆ such that ωi ∈ L(δ(ri−1, ri)) for

1 ≤ i ≤ k and

ω = ω1 · ω2 . . . ωk

(so that rk can be reached from q0 in M by processing ω) then there exists a positive integer ℓ
such that ℓ ≤ k and a sequence

q0 = r̂0, r̂1, . . . .r̂ℓ = rk

of states such that ri ∈ Q̂\{q0, qaccept} for 1 ≤ i ≤ ℓ−1, as well as strings ω̂1, ω̂2, . . . , ω̂ℓ ∈ Σ⋆,

such that ω̂i ∈ L(δ̂(r̂i−1, r̂i)) for 1 ≤ i ≤ ℓ and

ω = ω̂1 · ω̂2 . . . ω̂ℓ

(so that rk = r̂ℓ can be reached from q0 in M̂ by processing ω, as well).

Sketch of Proof. This can be proved by induction on k, using the strong form of mathematical

induction.

Basis: Suppose that k = 1. Then it is necessary and sufficient to consider a sequence

q0 = r0, r1

where r1 ∈ Q \ {q0, q} and a string ω ∈ Σ⋆ such that ω ∈ L(δ(r0, r1)) — because it must be

true that ω1 = ω in case.

Now, since δ̂(r0, r1) is the regular expression

(δ(r0, r1) ∪ ((δ(r0, q) ◦ (δ(q, q))
⋆) ◦ δ(q, r1))),
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and ω ∈ L(δ(r0, r1)), it is certainly the case that ω ∈ L(δ̂(r0, r1)) as well. One can therefore

set ℓ to be 1 (so that ℓ ≤ k), so that r̂1 = r1 and ω̂1 = ω in order to ensure that required

conditions are all satisfied — as needed to complete the basis.

Inductive Step: Let h be an integer such that h ≥ 1.3 It is necessary and sufficient to use the

following

Inductive Hypothesis: For every integer m such that 1 ≤ m ≤ h, for every se-

quence

q0 = r0, r1, . . . , rm

of states such that ri ∈ Q \ {q0, qaccept} for 1 ≤ i ≤ m − 1 and rm ∈ Q \ {q0, q},

and for every string ω ∈ Σ⋆, if there exist strings ω1, ω2, . . . , ωm ∈ Σ⋆ such that

ωi ∈ L(δ(ri−1, ri)) for 1 ≤ i ≤ m and

ω = ω1 · ω2 . . . ωm

(so that rm can be reached from q0 in M by processing ω) then there exists a

positive integer ℓ such that ℓ ≤ m and a sequence

q0 = r̂0, r̂1, . . . , r̂ℓ = rm

of states such that ri ∈ Q̂ \ {q0, qaccept} for 1 ≤ i ≤ ℓ − 1, as well as strings

ω̂1, ω̂2, . . . , ω̂ℓ ∈ Σ⋆, such that ω̂i ∈ L(δ̂(r̂i−1, r̂i)) for 1 ≤ i ≤ ℓ and

ω = ω̂1 · ω̂2 . . . ω̂ℓ

(so that rm = r̂ℓ can be reached from q0 in M̂ by processing ω, as well).

to prove the following

Inductive Claim: For every sequence

q0 = r0, r1, . . . , rh+1

of states such that ri ∈ Q \ {q0, qaccept} for 1 ≤ i ≤ h and rh+1 ∈ Q \ {q0, q},

and for every string ω ∈ Σ⋆, if there exist strings ω1, ω2, . . . , ωh+1 ∈ Σ⋆ such that

ωi ∈ L(δ(ri−1, ri)) for 1 ≤ i ≤ h+ 1 and

ω = ω1 · ω2 . . . ωh+1

(so that rh+1 can be reached from q0 in M by processing ω) then there exists a

positive integer ℓ such that ℓ ≤ h+ 1 and a sequence

q0 = r̂0, r̂1, . . . , r̂ℓ = rh+1

3The name “k” is already being used, so the name “h” will be used here instead.
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of states such that ri ∈ Q̂ \ {q0, qaccept} for 1 ≤ i ≤ ℓ − 1, as well as strings

ω̂1, ω̂2, . . . , ω̂ℓ ∈ Σ⋆, such that ω̂i ∈ L(δ̂(r̂i−1, r̂i)) for 1 ≤ i ≤ ℓ and

ω = ω̂1 · ω̂2 . . . ω̂ℓ

(so that rh+1 = r̂ℓ can be reached from q0 in M̂ by processing ω, as well).

With that noted, consider a sequence

q0 = r0, r1, . . . , rh+1

of states such that ri ∈ Q \ {q0, qaccept} for 1 ≤ i ≤ h and rh+1 ∈ Q \ {q0, q}, and a string

ω ∈ Σ⋆, such that there exist strings ω1, ω2, . . . , ωh+1 ∈ Σ⋆ such that ωi ∈ L(δ(ri−1, ri)) for

1 ≤ i ≤ h+ 1 and

ω = ω1 · ω2 . . . ωh+1

(so that rh+1 can be reached from q0 in M by processing ω).

Let m be the largest integer such that 0 ≤ m ≤ h and rm 6= q. Then either m = 0, 1 ≤ m ≤
h− 1, or m = h. These cases are considered separately below.

• Case: m = 0. In this case ri = q for every integer i such that 1 ≤ i ≤ h, so that

ω1 ∈ L(δ(r0, r1)) = δ(q0, q), ωi ∈ L(δ(ri−1, ri)) = L(δ(q, q)) for every integer i such

that 2 ≤ i ≤ h, and ωh+1 ∈ L(δ(rh, rh+1)) = L(δ(q, rh+1)). It follows that is in the

language of the regular expression

((δ(q0, q) ◦ (δ(q, q))
⋆) ◦ δ(q, rh+1))

so that ω is in the language of the regular expression

δ̂(q0, rh+1) = (δ(q0, rh+1) ∪ ((δ(q0, q) ◦ (δ(q, q))
⋆) ◦ δ(q, rh+1)))

as well. Now let ℓ = 1 and consider the the sequence

q0 = r̂0, r̂1 = r̂ℓ = rh+1,

and the string ω̂1 = ω. It follows from the above that

ω̂1 = ω ∈ L(δ̂(q0, rh+1)) = L(δ̂(r̂0, r̂1))

and ω̂1 = ω, so that this choice of ℓ, sequence of states r̂0, r̂1, and string ω̂1 satisfy the

conditions in the Inductive Claim in this case.
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• Case: 1 ≤ m ≤ h− 1. Let

ωL = ω1 · ω2 . . . ωm and ωR = ωm+1ωm+2 . . . ωh+1

so that ωL, ωR ∈ Σ⋆ and ω = ωL · ωR. Now m is an integer such that 1 ≤ m ≤ h,

q0 = r0, r1, . . . , rm

is a sequence of states such that ri ∈ Q \ {q0, qaccept} for 1 ≤ i ≤ m − 1 and rm ∈
Q \ {q0, q}, ωL ∈ Σ⋆, and ω1, ω2, . . . , ωm are strings in Σ⋆ such that ωi ∈ L(δ(ri−1, ri))
for 1 ≤ i ≤ m and

ωL = ω1 · ω2 . . . ωm

(so that rm can be reached from q0 in M by processing ωL). It now follows by the Induc-

tive Hypothesis that there exists a positive integer ℓ such that ℓ ≤ m and a sequence

q0 = r̂0, r̂1, . . . , r̂ℓ = rm

of states such that ri ∈ Q̂\{q0, qaccept} for 1 ≤ i ≤ ℓ−1, as well as strings ω̂1, ω̂2, . . . , ω̂ℓ ∈

Σ⋆, such that ω̂i ∈ L(δ̂(r̂i−1, r̂i)) for 1 ≤ i ≤ ℓ and

ωL = ω̂1 · ω̂2 . . . ω̂ℓ

(so that rm = r̂ℓ can be reached from q0 in M̂ by processing ωL, as well).

Since ℓ ≤ m ≤ h−1, ℓ+1 ≤ h and it follows by the definition of m that rm+1 = q. Indeed,

ri = q for every integer i such that m + 1 ≤ i ≤ h, so that ωm+1 ∈ L(δ(rm, rm+1)) =
δ(rm, q), ωi ∈ L(δ(ri−1, ri)) = L(δ(q, q)) for every integer i such that m + 2 ≤ i ≤ h,

and ωh+1 ∈ L(δ(rh, rh+1)) = L(δ(q, rh+1)). Since ωR = ωm+1 ·ωm+2 . . . ωh+1, it follows

that ωR is in the language of the regular expression

((δ(rm, q) ◦ (δ(q, q))⋆) ◦ δ(q, rh+1))

so that it is certainly in the language of the regular expression

δ̂(rm, rh+1) = (δ(rm, rh+1) ∪ ((δ(rm, q) ◦ (δ(q, q))⋆) ◦ δ(q, rh+1))).

Thus, since 1 ≤ ℓ+ 1 ≤ m+ 1 ≤ h, the integer ℓ+ 1, the sequence of states

r̂0, r̂1, . . . , r̂ℓ = rm, r̃ℓ+1 = rh+1

and sequence of strings

ω̂1, ω̂2, . . . , ω̂ℓ, ω̃ℓ+1 = ωR

satisfy the conditions in the Inductive Claim in this case.
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• Case: m = h. Let

ωL = ω1 · ω2 . . . ωh and ωR = ωh+1

so that ωL, ωR ∈ Σ⋆ and ω = ωL ·ωR. Now h is certainly an integer such that 1 ≤ m ≤ h,

and it follows by the Inductive Hypothesis that there exists a positive integer ℓ such that

ℓ ≤ h and a sequence

q0 = r̂0, r̂1, . . . , r̂ℓ = rh

of states such that ri ∈ Q̂\{q0, qaccept} for 1 ≤ i ≤ ℓ−1, as well as strings ω̂1, ω̂2, . . . , ω̂ℓ ∈

Σ⋆, such that ω̂i ∈ L(δ̂(r̂i−1, r̂i)) for 1 ≤ i ≤ ℓ and

ωL = ω̂1 · ω̂2 . . . ω̂ℓ

(so that rh = r̂ℓ can be reached from q0 in M̂ by processing ωL, as well).

Since ωR = ωh+1, ωR ∈ L(δ(rh, rh+1)), so that ωR is certainly in the language of the

regular expression

δ̂(rh, rh+1) = (δ(rh, rh+1) ∪ ((δ(rh, q) ◦ (δ(q, q))
⋆) ◦ δ(q, rh+1))).

Thus the integer ℓ+ 1, the sequence of states

r̂0, r̂1, . . . , r̂ℓ = rm = rh, r̃ℓ+1 = rh+1

and sequence of strings

ω̂1, ω̂2, . . . , ω̂ℓ, ω̃ℓ+1 = ωR = ωh+1

satisfy the conditions in the Inductive Claim in this case too.

Since the conditions in the Inductive Claim are established in every case, this establishes the

Inductive Claim, as required to complete the Inductive Step. The claim now follows by induction

on k.

Lemma 4. Let Σ, M , and M̂ be as above. The following property is satisfied for every positive

integer k: For every sequence

q0 = r̂0, r̂1, r̂2, . . . , r̂k

of states such that r̂i ∈ Q̂\{q0, qaccept} for 1 ≤ i ≤ k−1 and r̂k ∈ Q̂\{q0}, and for every string

ω ∈ Σ⋆, if there exist strings ω̂1, ω̂2, . . . , ω̂k ∈ Σ⋆ such that ω̂i ∈ L(δ̂(r̂i−1, r̂i)) for 1 ≤ i ≤ k
and

ω = ω̂1 · ω̂2 . . . ω̂k

(so that r̂k can be reached from q0 in M̂ by processing ω) then there exists a positive integer ℓ
such that ℓ ≥ k and a sequence

q0 = r0, r1, . . . .rℓ = r̂k
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of states such that ri ∈ Q\{q0, qaccept} for 1 ≤ i ≤ ℓ−1, as well as strings ω1, ω2, . . . , ωℓ ∈ Σ⋆,

such that ωi ∈ L(δ(ri−1, ri)) for 1 ≤ i ≤ ℓ and

ω = ω1 · ω2 . . . ωℓ

(so that r̂k = rℓ can be reached from q0 in M by processing ω, as well).

The proof of Lemma 4 is simpler, and shorter, than the proof of Lemma 3 — the result can be

proved using induction on k, with the standard form of mathematical induction. Proving this

lemma is left as an exercise.

Lemma 5. Let Σ, M and M̂ be as above. Then M̂ is a generalized nondeterministic finite

automaton, with one fewer state than M , such that L(M̂) = L(M).

Proof. Let L, M , and M̂ be as above. Then M̂ is a generalized nondeterministic finite au-

tomaton with one fewer state than M . It is therefore necessary and sufficient to show both that

L(M̂) ⊆ L(M) and L(M) ⊆ L(M̂) in order to establish the claim.

In order to show that L(M̂ ) ⊆ L(M), let ω ∈ Σ⋆ such that L(M̂). Then it follows by the

definition of acceptance of strings, by GNFAs, that there exists a positive integer k, a sequence

of states

q0 = r̂0, r̂1, . . . , r̂k = qaccept

such that r̂i ∈ Q\{q0, qaccept} for 1 ≤ i ≤ k−1, and a sequence of strings ω̂1, ω̂2, . . . , ω̂k ∈ Σ⋆

such that ω̂i ∈ L(δ̂(r̂i−1, r̂i)) for 1 ≤ i ≤ k and

ω = ω̂1 · ω̂2 . . . ω̂k

(so that qaccept can be reached from q0, in M̂ , by processing ω).

It now follows by Lemma 4 that qaccept can be reached from q0 in M by processing ω, as well.

That is, ω ∈ L(M).

Since ω was arbitrarily chosen from L(M̂) it follows that L(M̂) ⊆ L(M).

It can be shown that L(M) ⊆ L(M̂ ) using essentially the same argument, with Lemma 3 used

instead of Lemma 4.

Thus L(M̂) = L(M), as required to establish the claim.

Lemma 6. Let Σ be an alphabet and let M = (Q,Σ, δ, q0, qaccept). Then there exists a gen-

eralized nondeterministic finite automaton M̂ = (Q̂,Σ, δ̂, q̂0, q̂accept) such that |Q̂| = 2 (so that

Q̂ = {q̂0, q̂accept}) and L(M̂ ) = L(M).

Note that if Σ and M are as in the claim then, since q0 ∈ Q, qaccept ∈ Q and q0 6= qaccept, |Q| ≥
2. The result can be proved using induction on |Q|, using the standard form of mathematical

induction — considering the case that |Q| = 2 in the basis, and using Lemma 5 to establish

what is needed for the inductive step. Writing this proof is left as another exercise.
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Establishing the Desired Result

Lemma 7. Let Σ and let L ⊆ Σ⋆ be a regular language. Then there exists a regular expres-

sion R over Σ such that L is the language, L(R), of R.

Proof. Let Σ be an alphabet and let L ⊆ Σ⋆ such that L is a regular language.

Then it follows by Lemma 2 that there exists a generalized nondeterministic finite automaton

M = (Q,Σ, δ, q0, qaccept), with alphabet Σ such that L = L(M). Lemma 6 now implies that

there is a generalized nondeterministic finite automaton M̂ = (Q̂,Σ, δ̂, q̂0, q̂accept) such that

Q̂ = {q̂0, q̂accept} and L = L(M̂ ) as well. The generalized finite automaton M̂ has the form

q0start qA
δ̂(q̂0, q̂A)

— where the accepting state, qaccept, has been shown as “qA” just to make the picture a little

bit simpler. Since only a single transition, from the start state to the accepting state, can be

followed when processing a string, a consideration of the definition of “acceptance of a string

by a generalized nondeterministic finite automaton” is sufficient to see that one simply needs to

set R to be the regular expression δ̂(q0, qaccept) in order to ensure that L = L(R), and establish

the claim.

Finishing the Proof

Theorem 2 now follows from Lemmas 1 and 7.
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