Lecture #7: Regular Expressions and Regular Operations What Will Happen During the Lecture

Review

The lecture presentation will begin with a **brief** review of the material in the preparatory video and documents for this lecture — and students will have the chance to ask questions about this.

Recognition and Application of a Regular Expression

Let $\Sigma = \{a, b, c\}$ — so that that does not include any of the symbols

$$\lambda, \emptyset, \Sigma, (,), \cup, \circ, \star$$

and let

$$\Sigma_{\mathsf{regexp}} = \Sigma \cup \{\lambda, \emptyset, \text{``}\Sigma\text{''}, (,), \cup, \circ, \star\} = \{\mathsf{a}, \mathsf{b}, \mathsf{c}, \lambda, \emptyset, \text{``}\Sigma\text{''}, (,), \cup, \circ, \star\}.$$

Given a string $\omega \in \Sigma_{\text{redexp}}^{\star}$, you might wish to do each of the following things:

- Decide whether ω is a regular expression over Σ .
- If ω is a regular expression over Σ , then for a given string $\mu \in \Sigma^*$ decide whether μ belongs to the language of ω .
- If ω is a regular expression over Σ , then describe the language of ω .

These problems will be discussed using the string

$$\omega = ((((\Sigma)^{\star} \circ \mathbf{a}) \circ (\Sigma)^{\star}) \circ (\mathbf{a} \circ (\Sigma)^{\star})) \in \Sigma_{\mathsf{regexp}}^{\star}$$

and (for the second part of the problem) the strings $\mu_1 = \mathtt{abaca} \in \Sigma^\star$ and $\mu_2 = \mathtt{bac} \in \Sigma^\star$.

Designing a Regular Expression

If someone describes a language $L\subseteq \Sigma^\star$ — and L is a regular language — how can you discover a regular expression ω (over the alphabet Σ) whose language is L?

During the lecture presentation this question will be considered — as we design a regular expression — over the alphabet $\Sigma = \{a,b,c\}$, once again — for the language consisting of all strings in Σ^{\star} that include an even number of copies of the symbol "a" — that is, for the language

 $L = \{ \mu \in \Sigma^{\star} \mid \text{the number of copies of "a" in } \mu \text{ is divisible by } 2 \}.$