Lecture #7: Regular Expressions and Regular Operations Lecture Presentation

Main Points

Recognition and Application of a Regular Expression

Let $\Sigma = \{\mathtt{a},\mathtt{b},\mathtt{c}\}$ —- so that that does not include any of the symbols

$$\lambda, \emptyset, \Sigma, (,), \cup, \circ, \star$$

and let

$$\Sigma_{\mathsf{regexp}} = \Sigma \cup \{\lambda, \emptyset, ``\Sigma", (,), \cup, \circ, ``\} = \{\mathsf{a}, \mathsf{b}, \mathsf{c}, \lambda, \emptyset, ``\Sigma", (,), \cup, \circ, ``\}.$$

Consider the string

$$\omega = ((((\Sigma)^\star \circ \mathbf{a}) \circ (\Sigma)^\star) \circ (\mathbf{a} \circ (\Sigma)^\star)) \in \Sigma_{\mathsf{regexp}}^\star.$$

It turns out ω is a regular expression over Σ^* . How could you prove this?

Consider the string $\mu_1={\tt abaca}\in \Sigma^\star$. It turns out that μ_1 is in the language of the regular expression ω . *How could you prove this?*

Consider the string $\mu_2={\tt bac}\in\Sigma^{\star}$. It turns out that μ_2 is *not* in the language of the regular expression ω . *How could you prove this?*

What is the language of ω ? How could you prove this?

What is another way to prove that μ_1 belongs to the language of ω , but ω_2 is not in the language of ω , using the information that we have now?

Designing a Regular Expression for a Given Language

Once again, let $\Sigma = \{a, b, c\}$ and let L be the set of all strings in Σ^* that include an even number of copies of the symbol "a" — that is, the language

 $L = \{ \mu \in \Sigma^* \mid \text{the number of copies of "a" in } \mu \text{ is divisible by } 2 \}.$

This a regular language; suppose that we want to design a regular expression, over Σ , whose language is L.

Strategy for Discovery of a Regular Expression

A Simpler Language

An Even Simper Language

Working Our Way Back Up to \boldsymbol{L}