
Lecture #7: Regular Expressions and Regular Operations

Lecture Presentation

Main Points

1



Recognition and Application of a Regular Expression

Let Σ = {a,b,c} —- so that that does not include any of the symbols

λ, ∅,Σ, (, ),∪, ◦, ⋆

and let

Σregexp = Σ ∪ {λ, ∅, “Σ”, (, ),∪, ◦, ⋆} = {a,b,c, λ, ∅, “Σ”, (, ),∪, ◦, ⋆}.

Consider the string

ω = ((((Σ)⋆ ◦ a) ◦ (Σ)⋆) ◦ (a ◦ (Σ)⋆)) ∈ Σ⋆

regexp.

It turns out ω is a regular expression over Σ⋆. How could you prove this?





Consider the string µ1 = abaca ∈ Σ⋆. It turns out that µ1 is in the language of the regular

expression ω. How could you prove this?





Consider the string µ2 = bac ∈ Σ⋆. It turns out that µ2 is not in the language of the regular

expression ω. How could you prove this?





What is the language of ω? How could you prove this?





What is another way to prove that µ1 belongs to the language of ω, but ω2 is not in the language

of ω, using the information that we have now?



Designing a Regular Expression for a Given Language

Once again, let Σ = {a,b,c} and let L be the set of all strings in Σ⋆ that include an even

number of copies of the symbol “a” — that is, the language

L = {µ ∈ Σ⋆ | the number of copies of “a” in µ is divisible by 2}.

This a regular language; suppose that we want to design a regular expression, over Σ, whose

language is L.

Strategy for Discovery of a Regular Expression



A Simpler Language





An Even Simper Language



Working Our Way Back Up to L






