
Lecture #7: Regular Operations and Closure Properties of

Regular Language

Regular Expressions in Practice

Regular expressions were invented in 1951 by Stephen Cole Kleene, as part of his work in

“recursion theory” (and early name for computability theory). They therefore began as part of

“theoretical computer science”. More practical use began approximately in 1968, when they

were used for pattern matching in a text editor, and lexical analysis in a compiler.

Regular expressions currently have a variety of applications — but they do not generally look

like what has been described in the lecture notes. This supplemental document provides a bit

more information about what regular expressions are like “in practice”.

Dealing with Special Characters — “Escape” Sequences

The description of regular expressions, in the lecture notes, includes an inconvenient require-

ment about the alphabet, Σ — namely, that Σ does not include any of the special symbols

Σ, λ, ∅,∪, ◦, ⋆,(, or) (1)

We certainly will wish to work with alphabets including some, or all, of these special symbols;

in particular, it is generally unrealistic to require that the alphabet not include the left and right

bracket.

This inconvenient requirement is generally eliminated by introducing one more special symbol,

“\”, and using it to include escape sequence in regular expressions. If you wish to include one

of the special symbols in a regular expression as an element of the alphabet, then the special

character “\” should be included immediately before it in the regular expression.

1

For example, if the symbol “Σ” belongs to the alphabet Σ then the language a regular expres-

sion

\Σ

is a set of size one, including the symbol “Σ” — and not the entire input alphabet, which is the

language of the regular expression

Σ

This introduces another problem — how do you recognize “\” as a symbol in Σ. You do so

using the escape sequence “\\” so that, if \ ∈ Σ then the language of the regular expression

\\

is the set of size one, including the symbol “\”.

Now, we may include any symbol in the alphabet Σ that we want, and write regular expressions

in Σ⋆.

Simplifying Regular Expressions — Which Makes Things More Com-

plicated

Simplifications and Shortcuts

All but the shortest and simplest regular expressions can be long and hard to read — so

several simplifications and shortcuts are often used to produce shorter strings, replacing

the “regular expressions” defined so far — and that have the same languages as the regular

expressions that they “simplify”.

• Brackets can (sometimes) be left out — so that, for example, the regular expression

(over the alphabet Σ = {a,b})

((a ∪ b))⋆

can be replaced by a “simplified” regular expression

(a ∪ b)⋆

— which is (strictly speaking) not a regular expression over Σ at all (because it cannot

be produced using the construction, defined in the lecture notes, that is based on the

definition of a “regular expression”).

• The “◦” symbol can be left out —so that, for example, the regular expression

(a ◦ b)

2

can be replaced by a “simplified” regular expression

(ab)

—- or even by a further “simplified” regular expression

ab

• New notation is introduced for a common construction: If R is a regular expression

over an alphabet Σ then

(R)+

(which uses the new symbol, “+”) is a “simplified” language with the same language as

the regular expression

(R ◦ (R)⋆)

— that is, the language including of one or more strings in the language of R.

Once again, this “simplified regular expression” can (sometimes) be further simplified,

and replaced by

R+

More new notation can be introduced for another common construction: Let R be

a regular expression over an alphabet Σ, and let k be a non-negative integer. Suppose

that regular expressions SR,0, SR,1, SR,2, . . . are defined as follows.

– SR,0 = λ.

– SR,1 = R.

– For every integer i such that i ≥ 1, SR,i+1 is the regular expression

(SR,i ◦R)

Then it can be proved, by induction on k, that SR,k is a regular expression over Σ for

every non-negative integer k, and the language of SR,k is the set of strings that are the

concatenations of k strings in the language of R.

As a shortcut, the simplified regular expression

(R)k

is used instead of the regular expression SR,k (and understood to have the same lan-

guage) for every non-negative integer k. This“simplified regular expression” can (some-

times) be further simplified, and replaced by

Rk

3

A Complication: Ambiguity

As noted above, brackets can “sometimes” be removed. Sometimes they should not because

the language of the resulting “simplified regular expression” is not what you might expect!

Suppose, for example, that Σ = {a,b,c}. Then

((a ∪ b))⋆

is a regular expression, R1, over Σ, whose language is the set of all strings that do not include

any copies of “c” — so that the string ab is in the language of this regular expression. The

string

(a ∪ (b)⋆)

is also a regular expression, R2, over the alphabet Σ. The language of R2 is the union of {a}
and the set of strings in Σ⋆ that only include (zero or more) copies of “b” — so that the string

ab is not in the language of this regular expression.

Now, if we remove the outer brackets of the above regular expressions then we obtain the

“simplified” regular expressions

(a ∪ b)⋆

and

a ∪ (b)⋆

respectively — and the meaning of each is reasonably clear. However if we continue by re-

moving the remaining brackets then we obtain the further “simplified” expression

a ∪ b⋆ (2)

Now, since this has been obtained by “simplifying” both R1 and R2, its “language” could be

either the language of R1 or of R2 — so it is not clear whether the string ab belongs to the

language of this “simplified” regular expression, or not.

Let us say that a “simplified” regular expression is ambiguous if it can be obtained as the

simplification of two or more regular expressions (over its alphabet) by using the simplification

rules that have been given above — so that the simplified regular expression shown at line (2)

is an “ambiguous” simplified regular expression.

Precedence Rules

You might not realize it, but you are already familiar with this kind of problem! Consider the

“simplified” arithmetic expression

2 + 2× 2.

4

This might correspond to the arithmetic expression

(2 + (2× 2)),

which has value 2 + 4 = 6 — or it might correspond to the arithmetic expression

((2 + 2)× 2)

which has value 4 × 2 = 8. You will, ideally, remember that multiplication has higher prece-

dence than addition — that is, multiplications should be applied before additions, so that the

expression should be considered to be equivalent to

(2 + (2× 2))

and have value 2 + 4 = 6.

Simplified regular expressions can be handled (that is, the effects of “ambiguity” overcome) in

the same way:

• The star operation has higher precedence than the other operations in regular expres-

sions — so that

– R1 ∪ R⋆
2 has the same language as (R1 ∪ (R2)

⋆) — and not generally the same

language as ((R1 ∪R2))
⋆

– R1 ◦ R⋆
2 has the same language as (R1 ◦ (R2)

⋆) — and not generally the same

language as ((R1 ◦R2))
⋆.

• Concatenation has higher precedence than union — so that R1 ◦R2∪R3 has the same

language as ((R1◦R2)∪R3) — and not generally the same language as (R1◦(R2∪R3)).

When shortcuts “(R)+” and “(R)k” are used (for a regular expression R over Σ and k ≥ 0
these should have the same precedence as the star operation.

Examining the “simplified” regular expression at line (2) once again, one can see that — since

the star operation has a higher precedence than “∪”, the language of this expression should

be the language of

(a ∪ (b)⋆)

— that is, the union of {a} and the set of strings that (only) include zero or more copies of the

symbol “b”.

Brackets must not be used when their removal would change the language of the regular ex-

pression, when precedence rules are applied. Keeping a few more brackets than are strictly

needed can also make your “simplified” regular expression easier for someone else to under-

stand.

5

What about “Parsing”?

If “simplified” regular expressions are also to be used in computer software than a version

of the parsing problem for “simplified” regular expression (instead of “regular expressions”)

must be defined and solved. Furthermore, the parse tree produced from a “simplified” regular

expression must correspond to the language of the “simplified” regular expression when the

above precedence rules are applied.

These problems can be solved (so that a useful “parsing” algorithm for simplified regular ex-

pressions can be developed and used) — but the resulting parsing algorithm is more compli-

cated than the parsing algorithm for regular expressions — and this is (well) beyond the scope

of this course.

Industry Standards

As noted above, more practical use of regular expressions began approximately in 1968, when

they were used for pattern matching in a text editor, and lexical analysis in a compiler.

Several variations of regular expressions were used in various utilities, included in the UNIX

operating systems, developed at Bell Laboratories in the 1970’s, such as the following.

• Text editors, to find and replace test: ed, vi and (later) emacs, as well as the “stream-

oriented” text processor sed

• Programming languages for text processing, including awk

• Programs to support program compilation (including lexical analysis), initially including

lex

The format of regular expressions included in these early utilities was eventually standardized

— in the “POSIX.2 standard”, which is discussed below. As you will see below, quite a lot

of changes were made to produce versions of “regular expressions” that could be included in

command-line instructions or in code.

In the 1980’s significantly more complicated regular expressions were included in the (report

processing) programming language Perl. The “Perl syntax” for regular expressions is now the

other syntax (along with that given by the POSIX standard) that is widely used. Support for

regular expressions is now included in a variety of programming languages, including Python

and Java.

Many applications use their own (slightly different) syntax and features for regular expressions.

Documentation for any application that you are interested in should be consulted for further

details.

6

POSIX Standard

As noted above, a standard for regular expressions (strings of symbols over the ASCII char-

acter set) was developed in the 1970’s. While three “sets of compliance” were identified two

(SRE — Simple Regular Expressions) and another (BSE — Basic Regular Expressions) are

now primarily used to establish backward compatibility. The third (ERE — Extended Regular

Expressions) is more significant and is the basis for what follows.

• All characters match themselves except for the following special characters

.[]{ }() \ ∗ + ?| ^$

• The backlash character, \, is an escape character that effectively removes the “special

meaning” of the special symbols they follow, so that these symbols can also be included

in regular expressions. For example, the regular expression

\?

matches the character “?”, while

?

would probably not be recognized as a valid regular expression, at all. As another exam-

ple, the regular expression

\\

matches the backslash character, “\”

• The “dot” character . matches any single character.1 This is sometimes called a wild-

card .

• When it appears at the beginning of a regular expression, or subexpression, the “caret’

character ^ indicates that the regular expression should only match text at the beginning

of a line. For example, the regular expression

^A

(only) matches an A at the beginning of a line in the text being processed. Thus the

“caret” is one example of an anchor character .

1In some cases — with various “command flags” set — this can be prevented from matching either a NULL

character or a newline character.

7

• When it appears at the end of a regular expression or subexpression, $ indicates that the

regular expression should only match text at the end of a line. For example, the regular

expression

A$

(only) matches an A at the end of a line in the text being processed. Thus $ is another

example of an anchor character .

• A bracket expression is a list of characters enclosed by [and]. This matches any

single character in the list — except that if the first character is a caret, ^, then any

character that is not listed can be matched.

– Thus the regular expression

[0123456789]

matches any one of the digits 0,1, . . . ,9, while the regular expression

[^0123456789]

matches any of character except one of these digits.

– In bracket expressions, a range expression consists of two characters separated

by a hyphen, which is matched by an character in the identified range. For example,

the regular expression

[0–3]

matches any of the digits 0, 1, 2 or 3.

Unfortunately, range expressions might not have the meaning you intend because

characters might be ordered in the underlying character set in a way that is different

than you imagine. For example, the regular expression

[a–d]

might match any of a, b, c or d (as you probably expect) — but in some situations it

match any of a, A, b, B, c, C or d instead. Thus range expressions should probably

be used with care.

– Certain classes of characters, called character classes, are predefined within

bracket expressions. These seem to depend on the application being used but

generally include the following.

* [:lower:] — Lower-case alphabetic characters, that is, a,b,c, . . . ,z.

* [:upper:] — Upper-case alphabetic characters, that is, A,B,C, . . . ,Z.

* [:alpha:] — Alphabetic characters, including a,b,c, . . . ,Z and A,B,C, . . . ,Z.

* [:digit:] — Digits 0,1,2, . . . ,9.

8

* [:alnum:] — Alphanumeric characters, that is, the characters matched by

[:alpha:] or by [:digit:]

• One can simply write one regular expression after another to provide a regular expres-

sion that is the concatenation of simpler regular expressions. For example, the regular

expression

A..

matches any string with length three beginning with A.

• The “|” symbol is used to form regular expressions whose languages are the union of

the languages of simpler regular expressions. For example, the regular expression

calgary|edmonton

matches either one of the strings “calgary” or “edmonton”.

• Brackets can be used to change the usual precedence of operations. Thus, while

calgary|edmonton

matches either the string “calgary” or “edmonton”, the regular expression

calg(ary|edm)onton

matches either the string “calgaryonton” or the string “calgedmonton” instead.

• Several operators can be used for repetition.

– An asterisk, ∗, is to denote the “Kleene star” operation. For example, the regular

expression

a∗

matches a sequence of zero or more a’s.

– A + symbol can be used to indicate that one or more patterns matching a given

regular expression. For example, the regular expression

(00)+

matches an even number of 0’s, where the number is greater than or equal to two

(since the regular expression 00 must be matched one or more times).

– A question mark, ?, indicates that either zero or one string matching the preceding

character (or subexpression) should be used. Thus

three(or four)?

matches either “three” or “three or four”.

9

– The curly braces can be used to specify a number, or range of numbers, of copies

of a preceding character or subexpression that must be matched. For example,

if m and n are integers such that m < n then “{n}” indicates that the preceding

character (or subexpression) is to be matched exactly n times, “{m,}” indicates that

the preceding character (or subexpression) is to be matched m or more times, and

“{m,n}” indicates that the preceding character (or subexpression) is be matched

between m and n times. Thus

(Ab){2,4}

matches any of the strings AbAb, AbAbAb, or AbAbAbAb.

Applications

Search

The egrep command in UNIX accepts a regular expression (following “-e” and the name of a

text file, and lists the lines of the text containing strings that match the pattern.

For example, “L07 practical regular expressions.tex” is the name of the text file

that was typeset (using software called LATEX) to produce these typeset notes. An execution of

the command

egrep -e "[A-Z]{4}" L07 practical regular expressions.tex

lists all the lines of the file including four capital letters in a row — including all the lines con-

taining the word “UNIX.”

When combined with other commands (by “piping”) egrep can be used for other kinds of

searches too.

For example, the command

ls | egrep -e "[p-t]∗"

lists the names of all files in a directory that start with one of the letters “p,” “q,” “r”, “s” or “t”2.

There are text editors on all the major platforms, including

• Notepad++ on Windows

• BBEdit and TextMate on a Macintosh, or

2and, possibly, also “P,” “Q,” “R,” “S” and “T,” depending on system settings

10

• vi and emacs on UNIX or Linux

that allow you to supply a regular expression to search for a pattern in a text file being edited.

The details are different for each text editor (so you will need to read the documentation for this

if you are interested in this feature).

Many modern programming languages have libraries that support the use of regular expres-

sions in computer programs, so that you write programs that use regular expressions to per-

form sophisticated searches in text files.

Early“web browsers” for the internet also allowed users to supply regular expressions in search

bars in order to search for files.

This is, generally, not the case today. However, web scraping (also called web data extrac-

tion) is now recognized as a software technique for extracting information from web sites, and

web scraping software supports the use of regular expressions to do this.

All you need is access to web scraping software, and a background in computer programming

(with access the the software libraries mentioned on the previous slide) to make sophisticated

searches for information over the internet!

Data Base Support

Data Base Development is a significant area in computer science and virtually all of us rely

on data bases all the time during our studies and work — even though might might not always

realize it!

Students interested in this topic can learn more by taking CPSC 471.

Commonly used Data Base Management Systems — including MySQL and Oracle’s im-

plementation of SQL — support the use of regular expressions to search for information in

databases.

Lexical Analysis

“Lexical analysis” is part of the process of compiling a computer program — that is, generating

machine language from it that can be directly executed.

In this part of the process, characters in the computer program are grouped together and

replaced with “lexical items” or “tokens” (things with the words variable or expression).

The details are beyond the scope of this course — you can learn more about this by taking

CPSC 411 — but the “modern” way to identify the sets of characters that should be recognized

is to give regular expressions for them.

11

Going Beyond the Regular Languages

Many applications provide support for regular expressions that provide “extended” regular ex-

pressions whose languages are not regular languages at all! The most notable example of

such an extension concerns marked expressions which are “subexpressions”’ enclosed by

parentheses. In order to see what a “marked expression” looks like, consider the regular ex-

pression

(.{5})(.{3}) (3)

— which includes two marked subexpressions. The entire regular expression matches a string

with length eight. The first marked subexpression matches the prefix of the matched string

with length five and the second marked subexpression matches the rest, that is, the suffix with

length three.

If n is a digit from one to nine, and a given regular expression includes n or more matched

subexpressions, then \n refers to the substring, of the string matched by the entire regular

expression, that is matched by the nth matched subexpression. For example, consider the

regular expression at line (3), above. If this is used to match the eight-letter string elephant
then \1 refers to the substring eleph and \2 refers to ant.

Extended “regular expressions” whose languages are provably not regular languages, include

examples like

(.∗)\1

which matches strings of the form ωω, where ω is any string of symbols. It will be proved that

the language of this “extended regular expression” is not a regular language in lectures, later

in this course.

More Information

There is a tremendous amount of online information about the ways that various text editors

use regular expressions to search for (and, sometimes, replace) text.

The UNIX command man can be used to display information about a particular UNIX command.

For example, you can execute the command

man egrep

to discover more about how to use the egrep command.

12

