
Lecture #7: Regular Operations and Closure Properties of

Regular Language

Parsing Regular Expressions

Introduction

Recall that if Σ is an alphabet that does not include any of the special symbols

Σ, λ, ∅,∪, ◦, ⋆, (or),

then a regular expression over Σ is a string of symbols over a larger alphabet,

Σregexp = Σ ∪ {Σ, λ, ∅, (,),∪, ◦, ⋆}

that can be formed using a finite number of applications of the following rules.

(a) σ is a regular expression over Σ, for every symbol σ ∈ Σ

(b) “λ” (that is, the string in Σ⋆
regexp with length one, including the symbol λ) is a regular ex-

pression over Σ.

(c) “∅” (that is, the string in Σ⋆
regexp with length one, including the symbol ∅) is a regular expres-

sion over Σ.

(d) “Σ” (that is, the string in Σ⋆
regexp with length one, including the symbol Σ) is a regular

expression over Σ.

(e) If R1 and R2 are regular expressions over Σ then the string

(R1 ∪R2)

(that is, the concatenation of the symbol “(”, the regular expression R1, the symbol “∪”, the

regular expression R2, and the symbol “(”) is also a regular expression over Σ.

1

(f) If R1 and R2 are regular expressions over Σ then the string

(R1 ◦R2)

(that is, the concatenation of the symbol “(”, the regular expression R1, the symbol “◦”, the

regular expression R2, and the symbol “(”) is also a regular expression over Σ.

(g) If R is a regular expression over Σ then the string

(R)⋆

(that is, the concatenation of the symbol “(”, the regular expression R, the symbol “)”, and

the symbol “⋆”) is also a regular expression over Σ.

One way to show that a string, ω ∈ Σ⋆
regexp, is a regular expression over Σ, is to list a sequence

of applications of the above rules that can be used to form Σ. Unfortunately, this involves

guesswork — and it does not provide a reliable way to prove that a string in Σ⋆
regexp is not a

regular expression over Σ.

This document presents a reliable method to decide whether a given string ω ∈ Σ⋆
regexp is

a regular expression over Σ⋆. It also introduces a useful data structure — a parse tree —

corresponding to any regular expression, and describes how this can be obtained and used.

Useful Technical Results

Let Σ and Σregexp be as above. The following results concern a string

ω = σ1σ2 . . . σn (1)

where σ1, σ2, . . . , σn ∈ Σregexp (so that ω ∈ Σ⋆
regexp) and n ≥ 2.

Lemma 1. Let ω be as shown at line (1), and let k be an integer such that 1 ≤ k ≤ n − 1.

Suppose that ω is a regular expression over Σ.

(a) If σn is not the symbol “ ⋆”, then the number of copies of “(” in the prefix σ1σ2 . . . σk is

strictly greater than the number of copies of “)” in this prefix.

(b) If σn is the symbol “ ⋆” and k ≤ n − 2 then the number of copies of “(” in the prefix

σ1σ2 . . . σk is strictly greater than the number of copies of “)” in this prefix.

(c) If σn is the symbol “ ⋆” then the number of copies of “(” in the prefix σ1σ2 . . . σn−1 is equal

to the number of copies of “)” in this prefix.

2

Exercise: Prove this result by induction on n. The strong form of mathematical induction

should be used.

Note that if ω is as shown at line (1), above, ω is a regular expression over Σ, and σn = “ ⋆”,

then n ≥ 4, the substring

µ = σ2σ3 . . . σn−2

is also a regular expression over Σ, and ω = (ν)⋆. The following result concerns the only other

nontrivial case (concerning a string whose length is greater than one).

Lemma 2. Let ω be a regular expression over Σ that is as shown at line (1), and suppose that

σn 6= “ ⋆”. Then there exists a unique integer k, such that 2 ≤ k ≤ n − 1, which satisfies the

following properties.

(a) The number of copies of “ (” in the string

ν = σ2σ3 . . . σk−1

is equal to the number of copies of “)” in the above string ν.

(b) Either σk = “∪” or σk = “ ◦”.

Furthermore, if k is the (unique) integer described above then both of the substrings

ν = σ2σ3 . . . σk−1 and ϕ = σk+1σk+2 . . . σn−1

of ω are regular expressions over Σ, so that ω = (ν ∪ ϕ) if σk = “∪”, and ω = (ν ◦ ϕ) if

σk = “ ◦”.

Lemma 2 can be proved using the recursive definition of a regular expression over Σ (which

can be used to describe the form that ω can have), Lemma 1, and a consideration of the case

that σk = “ ⋆”, given above. Its proof is also left as an exercise.

Parse Trees

Definition

A parse tree for a regular expression ω over Σ is a rooted tree that can be defined as follows,

for a given regular expression ω ∈ Σ⋆:

(a) If ω is a symbol σ ∈ Σ then the parse tree for ω has a single node, with label σ.

(b) If ω is the symbol “λ”, then the parse tree for ω has a single node, with label “λ”.

(c) If ω is the symbol “∅”, then the parse tree for ω has a single node, with label “∅”.

3

◦

◦

◦

◦ ∪

⋆

⋆

Σ

Σ

λ 0

1

1

Figure 1: Parse Tree for the Regular Expression (((((Σ⋆) ◦ 1) ◦ (λ ∪ 0)) ◦ 1) ◦ (Σ)⋆)

(d) If ω is the symbol “Σ”, then the parse tree for ω has a single node, with label “Σ”.

(e) If ω is a regular expression “(µ ∪ ν)”, for regular expressions µ and ν over Σ, then the

parse tree for ω has a root with label ‘∪” with two children. The first child is the root of a

parse tree for µ, and the second child is the root of a parse tree for ν.

(f) If ω is a regular expression “(µ ◦ ν), for regular expressions µ and ν over Σ, then the parse

tree for ω has a root with label “◦” with two children. The first child is the root of a parse

tree for µ, and the second child is the root of a parse tree for ν.

(g) If ω is a regular expression “(µ)⋆, for a regular expression µ over Σ, then the parse tree

for ω has a root with label “ ⋆”, with one child. The child is the root of a parse tree for µ.

For example, if Σ = {0,1}, then the parse tree for the regular expression

(((((Σ⋆) ◦ 1) ◦ (λ ∪ 0)) ◦ 1) ◦ (Σ)⋆)

is as shown in Figure 1.

4

Parsing

Consider, now, the following computational problem.

The “Parsing” Problem

Precondition: A string ω ∈ Σ⋆
regexp is given as input.

Postcondition: If ω is a regular expression over Σ then a parse tree for ω is returned as

output. An empty tree is returned as output, otherwise.

It will be useful to have a solution for the following problem when developing a solution for the

above one.

The “Splitting” Problem

Precondition: A string

ω = σ1σ2 . . . σn ∈ Σ⋆
regexp

with length n ≥ 3, such that σ1 = “ (” and σn = “) ” is given as input.

Postcondition: An integer k such that 1 ≤ k ≤ n is returned as output. If ω is a regular

expression over Σ then n ≥ 5 and the following properties are satisfied.

(a) 3 ≤ k ≤ n− 2 and either σk = “∪ ” or σk = “ ◦ ”.

(b) The strings

µ = σ2σ3 . . . σk−1 and ν = σk+1σk+2 . . . σn−1

are regular expressions over Σ.

Lemma 2, above, can be used to develop and prove the correctness of an algorithm for the

“Splitting” problem: It suffices to sweep over the input string, ω, in order to keep track of the

difference between the number of copies of “ (” and “) ” that have been seen, so far: If an

integer k is found such that 1 ≤ k ≤ n, σk is either “∪ ” or “ ◦ ”, and there is exactly one

more copy of “ (” than there is of “) ”, then this integer k should be returned as output. If no

such integer k with these properties exists then ω cannot be a regular expression at all, and it

suffices to return the value k = 1. Similarly — since ω begins with “ (” and ends with “) ” — ω
cannot be a regular expression (so that 1 can be returned) if |ω| ≤ 4.

Pseudocode for an algorithm that uses this strategy to solve the “Splitting” problem is given in

Figure 2 on page 6.

Exercise — If you have completed a course in which proofs of correctness of algorithms with

loops has been discussed, prove the correctness of the splitting algorithm.

5

splitting (ω: Σ⋆
regexp) {

1. integer n := |ω|

2. if (n ≥ 5) {

// Suppose that ω = σ1σ2 . . . σn

3. integer k := 0

4 integer diff := 0

5. while (k < n)

6. k := k + 1

7. if (σk == “ (”) {

8. diff := diff + 1

9. } else if (σk == “) ”) {

10. diff := diff − 1

}

11. if ((diff == 1) and ((σk == “∪ ”) or (σk == “ ◦ ”))) {

12. return k

}

}

13. return 1

} else {

14. return 1

}

}

Figure 2: An Algorithm for the “Splitting” Problem

Once an algorithm (like the splitting algorithm) that correctly solves the “Splitting” problem

is available, an algorithm that recursively solves the “Parsing” problem is easy to describe.

Pseudocode for one such algorithm is given in Figure 3 on page 7 and in Figure 4 on page 8.

The correctness of this recursive algorithm (as a solution for the “Parsing” problem) can be

proved by induction on the length of the input string, ω, using the strong form of mathematical

induction — and using Lemma 2, as needed, to argue that ω is not a regular expression over Σ
(so that the output is correct) if the step at line 22 is reached and executed.

With a bit of work, one can also prove that this algorithm is also reasonably efficient: The num-

ber of executions of numbered steps, included in any execution of the splitting algorithm,

is at most linear in the length of the input string. This can be used to prove (again, by induction

on the length of the input string) that the number of executions of numbered steps, included in

6

parsing (ω : Σ⋆
regexp) {

1. integer n := |ω|

// Suppose ω = σ1σ2 . . . σn

2. if (n == 0) {

3. Return an empty tree.

4. } else if (n == 1) {

5. if ((σ1 ∈ Σ) or (σ1 ∈ {“λ ”, “ ∅ ”, “Σ ”})) {

6. Return a parse tree with size one, whose root has label σ1.

} else {

7. Return an empty tree.

}

8. } else if ((n ≥ 4) and (σ1 == “ (”) and (σn−1 == “) ”) and (σn == “ ⋆ ”)) {

9. Set µ to be the string σ1σ2 . . . σn−1, so that ω = (µ)⋆

10. Set T̂ to be the tree parsing(µ)

11. if (T̂ is not an empty tree) {

12. Return a parse tree whose root has label “ ⋆ ” and a single child — which is

the root of the parse tree T̂ .

} else {

13. Return an empty tree.

}

Figure 3: Beginning of an Algorithm for the “Parsing” Problem

any execution of the parsing algorithm, is at most quadratic in the length of the input string.

Thus, this is a “polynomial-time” algorithm.

Exercise: Suppose, again, that Σ = {0,1}. Trace the execution of the parsing algorithm on

the input string

(((((Σ⋆) ◦ 1) ◦ (λ ∪ 0)) ◦ 1) ◦ (Σ)⋆)

in order to confirm that the parse tree shown in Figure 1, on page 4, would be returned as

output.

7

14. } else if ((n ≥ 5) and (σ1 == “ (”) and (σn == “) ”)) {

15. integer k := splitting(ω)

16. if ((σk == “∪ ”)) or (σk == “ ◦”)) {

17. Set µ to be the string σ2σ3 . . . σk−1 and set ν to be the string

σk+1σk+2 . . . σn−1, so that ω = (µ σk ν)

18. Set TL to be the parse tree parsing(µ)

19. Set TR to be the parse tree parsing(ν)

20. if ((TL is not an empty tree) and (TR is not an empty tree)) {

21. Return a parse tree whose root has label σk, with two children: The left

child is the root of the parse tree TL, and the right child is the root of the

parse tree TR.

} else {

22. Return an empty tree.

}

} else {

23. Return an empty tree.

}

} else {

24. Return an empty tree.

}

}

Figure 4: Conclusion of an Algorithm for the “Parsing” Problem

Applications

Application: Construction of a Nondeterministic Finite Automaton with the Same

Language

Consider, now, the following computational problem. Once again, this concerns alphabets Σ
and Σregexp as described above.

8

Conversion to NFA

Precondition: A string ω ∈ Σregexp⋆ is given as input.

Postcondition: If ω is not a regular expression over Σ then an exception (which might

be an InvalidInputException) is thrown. Otherwise a nondeter-

ministic finite automaton

M = (Q,Σ, δ, q0, F),

such that the language of ω is the same as the language of M , is re-

turned as output.

The algorithm for this problem, informally given below, will always return a nondeterministic

finite automaton of the type described in Lemma 2 of the supplemental document “Proofs of

Closure Properties”. That is, there will be no transitions into the NFA’s start state. The set of

accepting states will be a set of size one — so that there will be exactly one “accepting state”

— and there will be no transitions out of this accepting state.

In order to solve this problem, one can begin by applying the parsing algorithm, shown in

Figures 3 and 4, to try to obtain a parse tree for the input string ω ∈ Σ̂⋆. If an empty tree is

returned then ω̂ is not a regular expression over Σ at all, and the exception mentioned in the

specification of this problem should be thrown.

Let Tω be the parse tree for ω that is obtained, otherwise.

The problem can be solved, for the case that ω is a regular expression over Σ, using a re-

cursive algorithm that accepts a parse tree T for a given regular expression as input. The

algorithm will proceed in different ways — all described in the supplemental document, “Proof

of Equivalence Claim”, for Lecture #7. This, in turn, makes use of the details of various proofs

of claims. The claims are stated in the lecture notes for Lecture #7 and the proofs are given in

the supplemental document, “Proofs of Closure Properties”.

• If the root of T stores a symbol σ ∈ Σ then ω is the symbol σ, the language of ω is

the set {σ}, and a nondeterministic finite automaton M = (Q,Σ, δ, q0, F) such that

Q = {q0, q1}, F = {q1}, and transitions are as follows, can be returned.

q0start q1
σ

• If the root of T stores a symbol λ then ω is the symbol λ, the language of ω is the set {λ},

and a nondeterministic finite automaton M = (Q,Σ, δ, q0, F) such that Q = {q0, q1},

F = {q1}, and transitions are as follows, can be returned.

q0start q1
λ

9

• If the root of T stores a symbol ∅ then ω is the symbol ∅, the language of ω is ∅, and

a nondeterministic finite automaton M = (Q,Σ, δ, q0, F) such that Q = {q0, q1}, F =
{q1}, and transitions are as follows, can be returned.

q0start q1

• If the root of T stores a symbol Σ then ω is the symbol Σ, the language of ω is Σ,

and a nondeterministic finite automaton M = (Q,Σ, δ, q0, F) such that Q = {q0, q1}),
F = {q1}, and — assuming that

Σ = {σ1, σ2, . . . , σn}

for a positive integer n = |Σ| — transitions are as follows, can be returned.

q0start q1
σ1, σ2, . . . , σn

• If the root of T stores a symbol ∪ then ω = (ω1 ∪ ω2) for a pair of shorter regular

expressions, ω1 and ω2, over Σ — and T is a shown below.

∪

T1 T2

T1 is a parse tree for the regular expression ω1, and T2 is a parse tree for the regular

expression ω2.

This algorithm can be recursively applied, with input ω1, to compute a nondeterministic

finite automaton M1 = (Q1,Σ, δ1, q1,0, F1) such that F1 = {q1,F } for a state q1,F ∈ Q1,

that does not include any transitions into q1,0 or out of q1,F — such that the language

of M1 is also the language of ω1. The algorithm can also be recursively applied, with

input ω2, to compute a nondeterministic finite automaton M2 = (Q2,Σ, δ2, q2,0, F2) such

that F2 = {q2,F} for a state q2,F ∈ Q2, that does not include any transitions into q2,0
or out of q2,F — such that the language of M2 is also the language of ω2. Renaming

states in Q1 and Q2 as needed it can be assumed that q0, qF /∈ Q1, q0, q2 /∈ Q2, and

Q1 ∩Q2 = ∅.

10

q
1, 0

q
1, F

M
1

q
2, 0

M
2

q
0Start

λ

λ

q
F

λ

λ

q
2, F

Figure 5: A Nondeterministic Finite Automaton for the Regular Expression (ω1 ∪ ω2)

Now consider a nondeterministic finite automaton

M = (Q,Σ, δ, q0, F)

that has M1 and M2 as components and whose structure is as shown in Figure 5. That

is,

Q = {q0, qF } ∪Q1 ∪Q2,

the alphabet Σ is the same as for M1 and M2, the new state, q0, is the start state,

F = {qF },

and the transition function δ : Q× Σλ → P(Q) is defined as follows.

– It is only possible to move from the new start state to one of the old start states,

and no symbols are processed when doing this — so that

δ(q0, λ) = {q1,0, q2,0}

and

δ(q0, σ) = ∅ for every symbol σ ∈ Σ.

– All transitions for states in Q1, except for q1,F , are the same in M as they were

in M1. That is,

δ(q, σ) = δ1(q, σ) for every state q ∈ Q1 \ {q1,F } and for all σ ∈ Σλ.

11

– The only transition out of q1,F is a λ-transition to the new accepting state. That is,

δ(q1,F , λ) = {qF} and δ(q1,F , σ) = ∅ for all σ ∈ Σ.

– All transitions for states in Q2, except for q2,F , are the same in M as they were

in M2. That is,

δ(q, σ) = δ2(q, σ) for every state q ∈ Q2 \ {q2,F } and for all σ ∈ Σλ.

– The only transition out of q2,F is a λ-transition to the new accepting state. That is,

δ(q2,F , λ) = {qF} and δ(q2,F , σ) = ∅ for all σ ∈ Σ.

– There are no transitions out of the new accepting state. That is, δ(qF , λ) = ∅ and

δ(qF , σ) = ∅ for all σ ∈ Σ.

This nondeterministic finite automaton has a unique accepting state, with no transitions

into the start state or out of the accepting state. It is similar to — but not, quite, the

same as — the nondeterministic finite automaton described in the proof of Lemma #3

in the supplemental document “Proof of Closure Properties” — and it is a reasonably

straightforward exercise to modify the proof of that lemma, in order to show that the

language of the nondeterministic finite automaton in Figure 5 is

L(M1) ∪ L(M2) = L(ω1) ∪ L(ω2) = L((ω1 ∪ ω2)) = L(ω),

as desired.

• If the root of T stores a symbol ◦ then ω = (ω1 ◦ ω2) for a pair of shorter regular

expressions, ω1 and ω2, over Σ — and T is a shown below.

◦

T1 T2

T1 is a parse tree for the regular expression ω1, and T2 is a parse tree for the regular

expression ω2.

This algorithm can be recursively applied, with input ω1, to compute a nondeterministic

finite automaton M1 = (Q1,Σ, δ1, q1,0, F1) such that F1 = {q1,F } for a state q1,F ∈ Q1,

that does not include any transitions into q1,0 or out of q1,F — such that the language

of M1 is also the language of ω1. The algorithm can also be recursively applied, with

input ω2, to compute a nondeterministic finite automaton M2 = (Q2,Σ, δ2, q2,0, F2) such

that F2 = {q2,F} for a state q2,F ∈ Q2, that does not include any transitions into q2,0

12

q
2, 0

q
2, F

M
2

λλ

M
1

q
0Start q

1, 0
q

1, F

Figure 6: A Nondeterministic Finite Automaton with Language ω1 ◦ ω2

or out of q2,F — such that the language of M2 is also the language of ω2. Renaming

states in Q1 and Q2 as needed it can be assumed that q0, qF /∈ Q1, q0, q2 /∈ Q2, and

Q1 ∩Q2 = ∅.

Now consider a nondeterministic finite automaton

M = (Q,Σ, δ, q0, F)

that has M1 and M2 as components and whose structure is as shown in Figure 6,

above — so that this is the nondeterministic finite automaton considered in the proof

of Lemma #4 in the supplemental document “Proof of Closure Properties”. This non-

deterministic finite automaton has a unique accepting state, with no transitions into the

start state or out of the accepting state. Since it is the nondeterministic finite automaton

considered in the above proof, it suffices to review the details of this proof to confirm that

its language is

L(M1) ◦ L(M2) = L(ω1) ◦ L(ω2) = L((ω1 ◦ ω2)) = L(ω),

as desired.

• In the only remaining case, the root of T stores a symbol ⋆ and ω = (ω1)
⋆ for a shorter

regular expression, ω1, over Σ — and T is a shown below.

⋆

T1

T1 is a parse tree for the regular expression ω1.

13

λ

λ

M
1

q
1, 0

Start

q
1, F

q
0

q
Fλ

Figure 7: A Nondeterministic Finite Automaton with Language L(ω1)
⋆

Once again, this algorithm can be recursively applied, with input ω1, to compute a nonde-

terministic finite automaton M1 = (Q1,Σ, δ1, q1,0, F1) such that F1 = {q1,F } for a state

q1,F ∈ Q1, that does not include any transitions into q1,0 or out of q1,F — such that the

language of M1 is also the language of ω1. Renaming states in Q1 as needed it can be

assumed that q0, qF /∈ Q1.

Now consider a nondeterministic finite automaton

M = (Q,Σ, δ, q0, F)

that has M1 as a component and whose structure is as shown in Figure 7, above. That

is,

Q = {q0, qF} ∪Q1,

the alphabet Σ is the same as for M1, the new state, q0, is the start state,

F = {qF },

and the transition function δ : Q× Σλ → P(Q) is defined as follows.

– It is only possible to move from q0 to the start state, q1,0, for M1, and no symbols

are processed when doing this — so that

δ(q0, λ) = {q1,0}

and

δ(q0, σ) = ∅ for every symbol σ ∈ Σ.

– Transitions out of all states in Q1, except for q1,F , are the same for M as they are

for M1. That is,

δ(q, σ) = δ1(q, σ) for all q ∈ Q \ q1,F and for all σ ∈ Σλ.

14

– There are λ-transitions from q1,F back to M1’s start state and to M ’s accepting

state — and no other transitions out of q1,F are defined. That is,

δ(q1,F , λ) = {q1,0, qF }

and

δ(q1, F), σ) = ∅ for all σ ∈ Σ.

– There are no transitions out of qF . That is,

δ(qF , σ) = ∅ for all σ ∈ Σλ.

This nondeterministic finite automaton has a unique accepting state, with no transitions

into the start state or out of the accepting state. It resembles the nondeterministic finite

automaton considered in the proof of Lemma #5 in the supplemental document “Proof of

Closure Properties” — and the modification of this proof, to establish that the language

of M is

(L(M1))
⋆ = (L(ω1))

⋆ = L((ω1)
⋆) = L(ω)

(as desired) is left as an exercise.

Exercises:

1. Use the above information to write pseudocode for an algorithm to solve the “Conversion

to NFA” problem and sketch a proof that your algorithm is correct. You do not need to

worry about the encodings of inputs, outputs, or intermediate values (so that these could

be included in a computer program) when you solve this problem.

2. Let ω ∈ Σ⋆
regexp be a regular expression over Σ, such that ω is a string with length n.

Prove that the parse tree for ω, produced using the algorithm shown in Figures 3 and 4,

has at most (n+ 1)/2 nodes. (That is, its “size” is at most (n + 1)/2.)

3. Let T be a parse tree, for a regular expression over Σ, with at most k nodes. Prove that

the nondeterministic finite automaton (with the same language) that is generated, using

the process described above, has at most 2k states.

4. Let ω ∈ Σ⋆
regexp be a regular expression over Σ that is also a string with length n. Use the

above results to show that the nondeterministic finite automaton with the same language

as ω, produced using the above construction, has at most n+ 1 states.

15

Application: Deciding Membership of a String in the Language of a Regular

Expression

Finally, consider the following computational problem — which also concerns alphabets Σ and

Σ̂, as described above.

Membership in the Language of a Regular Expression

Precondition: A string ω ∈ Σ⋆
regexp and a string µ ∈ Σ⋆ are given as input.

Postcondition: If ω is not a regular expression over Σ then an exception (which might

be an InvalidInputException) is thrown. Otherwise, true is re-

turned if µ is in the language of the regular expression ω, and false is

returned otherwise.

Let ω ∈ Σ⋆
regexp. An algorithm for the above problem, with input ω, can begin execution by

using a solution for the above problem, “Conversion of an NFA”, to throw the kind of exception

that is needed, if ω is not a regular expression over Σ, and to produce a nondeterministic finite

automaton

M = (Q,Σ, δ, q0, F)

such that L(M) = L(ω), if ω is a regular expression over ω. As noted above M will have at

most one accepting state, and |Q| will be at most one more the length of ω, whenever ω is a

regular expression over Σ.

The algorithm for “Membership in the Language of a Regular Expression” could then be com-

pleted (again, for the case that the input is a regular expression) by implementing an algorithm

that decides whether the given string µ ∈ Σ⋆ is in the language of the regular expression of

the nondeterministic finite automaton, M , that has been generated. As noted below, an algo-

rithm for this problem can be developed using information introduced in the lecture notes and

supplemental material for Lecture #5:

• To begin (in a “pre-computing stage”) one should compute the λ-closure, Clλ(q), for

every state q ∈ Q. The supplemental document, “Computation of λ-Closures”, for Lec-

ture #5 describes an algorithm for this computation.

• As mentioned in the lecture notes for Lecture #5,

δ⋆(q0, λ) = Clλ(q0) (2)

and

δ⋆(q0, ν · σ) =
⋃

r∈δ⋆(q0,ν)


 ⋃

s∈δ(r,σ)

Clλ(s)


 (3)

16

for every string ν ∈ Σ⋆ and every symbol σ ∈ Σ. These equations can be used to

develop a simple (and efficient) algorithm to compute δ⋆(q0, µ), assuming that the λ-

closures, above, and a way to evaluate the transition function δ is available.

• Once δ⋆(q0, µ) has been computed it remains only to check whether qF ∈ δ⋆(q0, µ),
where qF is the unique accepting state in M : µ is in the language of the regular expres-

sion ω — and true should be returned — if qF ∈ δ⋆(q0, µ), and µ is not in the language

of the regular expression ω — and false should be returned — otherwise.

Results from the supplemental documents, described above, can be applied to show that an

algorithm, based on the above outline, would correctly solve the “Membership in the Language

of a Regular Expression”. Furthermore, if reasonable decisions are made about how to encode

symbols in an (arbitrarily large) alphabet Σ, parse trees, and nondeterministic finite automata,

then this algorithm can be implemented to produce a polynomial-time algorithm for this problem

(that would also be reasonably efficient, in practice).

17

