Lecture #7: Regular Operations and Closure Properties of
Regular Language

Proofs of Closure Properties

Introduction

This document provides a proof of the following result — which was stated, but not proved, in
the notes for Lecture #7.

Theorem 1. Let . be an alphabet, and let A, B C ¥*.

(a) If A and B are regular languages then A U B is a regular language, as well.

(b) If A and B are regular languages, then A o B is a regular language, as well.

(c) If A is a regular language then A* is a regular language as well.

A Useful Minor Result

The following minor result will be repeatedly of use when developing a proof of the above claim.

Lemma 2. LetY be an alphabet, and let L C ¥*. Then L is a regular language if and only if L
is the language L(M) of some nondeterministic finite automaton M = (Q, 3,0, qo, F') which
satisfies the following properties.

(a) There are no transitions into qo, at all. Thatis, qo ¢ d(q,0) for any state ¢ € Q or any
symbol o € X, so that the only string w € X* such that qy € 0*(qo,w) is the empty string,
w =\

(b) M has exactly one accepting state, qr, and there are no transitions out of this state. That
is, F = {qr} and §(qr,c) = () for every symbol o € 3.

Sketch of Proof. Suppose, first, that L is the language L(M) of some nondeterministic finite
automaton M = (Q, X, 4, qo, F') which satisfies properties (i) and (ii), above. Then, since M



is a nondeterministic finite automaton, it follows by the results in established in Lecture #6
that L is the language of some deterministic finite automaton as well — that is, L is a regular
language.

Suppose, next, that L is a regular language. Then — once again, by the results established in

—

Lecture #6 — L = L(M) for some nondeterministic finite automaton

—

M = (@7275\7(/]\071?)'

Renaming the states in @ if necessary, we may assume without loss of generality that @ does
not include states called either ¢q or qr.

Consider an NFA M = (Q, %, 0, qo, F') such that the following properties are satisfied.

e Q= @ U {qo,qr} — that is, we have added states ¢y and ¢ to the set of states of M.

. Tha)nly transition out of the new start state, qo, is a A-transition to the old start state gy
of M. Thatis, §(qo, \) = {qo} and 6(qo, o) = () for every symbol o € .

* Transitions for the states in @ are unchanged — except that a A-transition is added from

each state in I to the new state gp. Thatis, d(q, o) = é(q, o) for every state q € @ and
symbol o € 3, while if ¢ € @ then

5(q,\) = 3(g,\) U{ar} ifgeF,
T (g, A) if g ¢ F.

* gqr is the only accepting state of M — that is, F' = {¢r} — and there are no transitions
out of gp. Thatis, §(qp,0) = D forall o € 2.

Using the above rules, the following properties about A-closures of states are easily estab-
lished.

« If A\ ¢ L then the \-closure of the new start state gy in M is the union of {¢o} and the
A-closure of the old start state, g, in M.

* On the other hand, if A € L then the A-closure of the new start state qo in M is the union
of {qo, ¢r} and the A-closure of the old start state, o, in M.

* For every state ¢ € @ if the A-closure of g in M does not include any accepting states
(that is, states in F), then the A-closure of ¢ in M is the same set as the A-closure of ¢
in M.

» Forevery state g € @ if the A-closure of ¢ in M does include at least one accepting state,
then the A-closure of ¢ in M is the union of the A-closure of ¢ in M and the set {¢r}.



+ The \-closure of the new accepting state gz in M is the set {¢r}

It follows by the above that

6 (qo, ) = {40, qr} US*(qAO,)\) if\e L,
v {QO} @] 5*(@\0, )\) if \ §é L,

sothat A € L(M) if and only if A € L(M\). Furthermore, it can also be proved (by induction'
on the length of the string w) that if w € X is a non-empty string then

%= 5 @G, w) ifw ¢ L.

Thus w € L(M) if and only if w € L(M) as well.

—

It follows that L(M) = L(M) = L and, since M is a nondeterministic finite automaton that
satisfies properties (a) and (b), above, this establishes the claim. O

Establishing Closure Under Union

Lemma 3. Let XY be an alphabet and let L, Ly C X*. If L1 and Lo are both regular languages
then L1 U Lo is a regular language as well.

Sketch of Proof. Let X be an alphabet, let L1, Lo C ¥*, and suppose that the languages L1
and Lo are both regular. Then there exist nondeterministic finite automata

M, ={Q1,%,01,q10, F1} and My ={Q2,%, 2,920, F2}

such that L(M;) = Ly, L(Ms) = Lo, and these nondeterministic finite automata have all the
properties described in Lemma 2 — so that, in particular, F; = {¢; } for some state g1 r € Q1
and F, = {¢o r} for some state ¢» » € Q2. Renaming states as needed we may assume that

Q1N Q2 =0andthat gy ¢ Q1 and gy ¢ Q.

Now consider a nondeterministic finite automaton
M - (Q72757QO7F)

that has M; and M, as components and whose structure is as shown in Figure 1 on page 4.
That is,
Q={q}UQ1UQs,

This proof, and other proofs by induction mentioned in this document, are left as exercises.
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Figure 1: A Nondeterministic Finite Automaton with Language L1 U Lo

the alphabet X is the same as for My and M>, the new state, qq, is the start state,

F=FRUF ={qr,r},

and the transition function ¢ : @ x 3, — P(Q) is defined as follows.

+ It is only possible to move from the new start state to one of the old start states, and no
symbols are processed when doing this — so that

3(q0,N) =1{q1,0, 02,0}

and
d(go,0) =0 for every symbol o € .

« All transitions for states in )1 are the same in M as they were in M. That is,

0(q,0) = d1(q,0) for every state ¢ € )1 and for all o € 3.

« All transitions for states in (05 are the same in M as they were in M,. That is,

0(q,0) = d2(q,0) for every state ¢ € Q2 and for all o € X,.
This can be used to confirm that A-closures in these automata are related as follows.

* The X-closure of g in M is the union of {qo }, the A-closure of ¢; o in M, and the A-closure
of q2,0 in Mg.



« If ¢ € Q1 (so that g is a state in the automaton M) then the A-closure of ¢ in M is the
same set as the \-closure of g in Mj.

+ If ¢ € @2 (so that ¢ is a state in the automaton Ms) then the A-closure of ¢ in M is the
same set as the A-closure of ¢ in M.

It follows from the above that

8 (g0, A) = {0} U 67(q1,0, A) U 05(q2,0, A)-

On the other hand, if w is a non-empty string in X* then it can be proved, by induction on the
length of w, that
6*(qo, w) = 07(q1,0,w) U 05(q2,0, w)-
Now, since F' = F} U F, (and go ¢ F) it immediately follows that if w € ¥* then w € L(M)
if and only if either w € L(M;) or w € L(Ms) (or both). That is — since L; = L(M;) and
Lo = L(Ms) —
L(M) = Li U Ls.

Since L1 U Ly is the language of a nondeterministic finite automaton it follows, by the results
established in Lecture #6, that L1 U L, is also the language of a deterministic finite automaton.
That is, L1 U Lo is a regular language, as needed to establish the lemma. O

Establishing Closure Under Concatenation

Lemma 4. Let> be an alphabet and let L1, Lo C ¥*. If L1 and Lo are both regular languages
then L1 o Lo is a regular language as well.

Sketch of Proof. Let X be an alphabet, let L1, Lo C ¥*, and suppose that the languages L
and Lo are both regular. Then there exist nondeterministic finite automata

M, ={Q1,%,01,q10, F1} and My ={Q2,%, 92,920, F2}

such that L(M;) = Ly, L(Ms) = Lo, and these nondeterministic finite automata have all the
properties described in Lemma 2 — so that, in particular, F; = {q; r} for some state ¢1 r € Q1
and F» = {qo r} for some state ¢2 € Q2. Renaming states as needed we may assume that

Q1N = @ and that qo Qf Q1 and qq gf Qs.

Now consider a nondeterministic finite automaton

M = (Q>E757q0>F)
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Figure 2: A Nondeterministic Finite Automaton with Language L; o Lo

that has M; and M, as components and whose structure is as shown in Figure 2, above. That

is,

Q={q}UQ1UQq,

the alphabet ¥ is the same as for M; and Ms, the new state, qq, is the start state,

F:F2:{q2,F}>

and the transition function ¢ : @ x ¥, — P(Q) is defined as follows.

It is only possible to move from the new start state to the start state for My, and no
symbols are processed when doing this — so that

5(qo, \) = {fh,o}

and
d(qo,0) =0 for every symbol o € .

For every state ¢ € Q1 such that ¢ # ¢1 r (so that ¢ is not M;’s accepting state)

0(q,0) =61(q,0) forallo € Xj.

It is possible to move from Mj’s accepting state to Ms’s start state, and no symbols are
processed when doing so, so that

5(q1,7,A) = {q20}

and
d(q1,r,0) =0 for every symbol o € X.

For every state q € 0o,

0(q,0) = d2(q,0) forallo € 2.



This can be used to confirm that A-closures in these automata are related as follows.

* If A € Ly (so that 1  is in the A-closure of ¢; ¢ in M) then the A-closure of qp in M is
the union of {¢o}, the A-closure of ¢; ¢ in M, and the A-closure of g2 o in M.

On the other hand, if A ¢ Ly, then the A-closure of gy in M is the union of {gy} and the
A-closure of g1 g in M.

* For every state ¢ € Q1, if g1 r is in the A-closure of ¢ in M, then the A-closure of g in M
is the union of the A-closure of g in M; and the A-closure of ga o in Ma.

On the other hand, if ¢1,  is not in the A-closure of ¢ in M, then the A-closure of ¢ in M
is the same set as the A-closure of ¢ in M.

 For every state ¢ € ()2, the \-closure of ¢ in M is the same set as the A-closure of ¢
in MQ.

It follows from the above that

5 (a0, ) — 4 1001 V0T (@100 U3 (a20.3) if A€ Ly,
) {QO} U 5{((]170,)\) if A ¢ L.

The following properties can be established by induction on the length of the string, w:

(a) For all states 1,72 € Q1 and for every string w € >*,

ro € 0*(r1,w) ifandonlyif ro € 07 (r1,w).

(b) For every state ro € (Q; and for every string w € ¥*,

ry € 0%(qo,w) ifandonlyif 7o € 07(g1,0,w).

(c) Forallstates 7y € Q1 and s € Q2, o € 0*(r1,w) if and only if there exist strings u, v € ¥*
such that the following properties are satisfied.
hw=p-v.
i. qup € 67(r1, 1)
iii. Tro € 55(QQ’0, I/).
(d) For every state 1o € Q2, 12 € *(qo,w) if and only if there exist strings u, v € X* such that
the following properties are satisfied.
iw=p-v.

ii. ne L1 — so that q1,r € 5f(q1,0,u).



iii. ro € 55(QQ70, V).
(e) For all states 1 € Q2 and ry € Q,
ro € 0*(r1,w) ifandonlyif 7o € Q2 and ry € 05(r1,w).
Since F' = {¢2,0} it now follows by part (d), above, that — for every string w € ¥* —w € L(M)

(that is, g2.r € 6*(qo,w) if and only if there exist strings p, v € ¥* such that the following
properties are satisfied

ihwep-v.
ii. n e L1 — so that q1,r € 5{((]170,;1).
iii. q2,F € 55(QQ,V) —sothatv € Ls.

Thatis, L(M) = Ly o L.

Since L1 o Ls is the language of a nondeterministic finite automaton it follows, by the results
established in Lecture #6, that L; o L, is also the language of a deterministic finite automaton.
That is, L o Lo is a regular language, as needed to establish the lemma. O

Establishing Closure Under Kleene Star

Lemma 5. LetX be an alphabet and let L. C ¥*. If L is a regular language then L* is a regular
language as well.

Sketch of Proof. Let Y. be an alphabet, let L C 3*, and suppose that the language L is regular.
Then there exists a nondeterministic finite automaton

My ={Q1,%,d1,q10, F1}

such that L(M;) = L, and this nondeterministic finite automaton has all the properties de-
scribed in Lemma 2 — so that, in particular, F; = {q1,#} for some state ¢; » € Q1. Renaming
states as needed we may assume that ¢y ¢ Q1.

Now consider a nondeterministic finite automaton
M - (Q72757QO7F)
that has M; as a component and whose structure is as shown in Figure 3 on page 9. That is,

Q = {q(]} U le
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Figure 3: A Nondeterministic Finite Automaton with Language L*

the alphabet X is the same as for M7, the new state, qq, is the start state,

F= {q0}7

and the transition function ¢ : @ x ¥, — P(Q) is defined as follows.

* It is only possible to move from qq to the start state, 1,0, for M7, and no symbols are
processed when doing this — so that

5(qo, \) = {qLo}

and
d(qo,0) =0 for every symbol o € .

+ For every state ¢ € Q1 such that ¢ # ¢1 F,

d(q,0) = d1(q,0) forall o € Xj.

* It is only possible to move from ¢ r to go, and no symbols are processed when doing
that, so that

dqir, A) = {qo}

and
d(q1,r,0) =0 for every symbol o € X.

This can be used to confirm that A-closures in these automata are related as follows.

« The A-closure of g in M is the union of {¢go} and the A-closure of ¢; o in M.



+ For every state ¢ € @1, if 1,7 belongs to the A-closure of ¢ in M, then the A-closure
of ¢ in M is the union of the A-closure of ¢ in M, the set {qo}, and the A-closure of ¢; o
in Ml.

On the other hand, if ¢; » does not belong to the A-closure of ¢ in M, then the A-closure
of ¢ in M is the same set as the A-closure of ¢ in Mj.

It follows from the above that

6*(q0,A) = {q0} U 61 (0,1, \)
—sothat A € L(M), since ¢ € F.
The following properties are satisfied for every non-empty string w € ¥* — and can be proved

by mathematical induction on the length of w:

(@) Forevery state g € Q1, ¢ € §*(qo,w) if and only if there exists an integer k such that £ > 0,
as well as strings 1, uo, . . ., ug, ¥ € X*, such that the following properties are satisfied.

i. p;is a non-empty string in L = L(Mj) for every integer i such that 1 < i < k.2
ii. ¢ €67(qo,1,v).
i, w=p1-po... ug-v.

(b) qo € 6*(qo,w) — so that w € L(M) — if and only if there exists a positive integer k, as
well as strings w1, uo, - - ., i € X*, such that the following properties are satisfied.

i. p; is a non-empty string in L = L(M,) for every integer i such that 1 < i < k.
. w=p1-po... 0.
It follows by the above that L(M) = (L(M;))* = L*.

Since L* is the language of a nondeterministic finite automaton it follows, by the results estab-
lished in Lecture #6, that * is also the language of a deterministic finite automaton. That is, L*
is a regular language, as needed to establish the lemma. O

Completion of the Proof

Proof of Theorem 1. Part (a) and (b) of the claim are implied by Lemmas 3 and 4, respectively,
with languages L, and Ly (in the lemmas) replaced by A and B, respectively. Part (c) of the
claim is implied by Lemma 5, with language L (in the lemma) replaced by A. O

2Note that this part of the claim is trivially satisfied when k& = 0 because it is “vacuous” (that is, empty) —
because there is no such integer ¢ or string ; in this case, at all.
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