
Lecture #7: Regular Operations and Closure Properties of

Regular Language

Proofs of Closure Properties

Introduction

This document provides a proof of the following result — which was stated, but not proved, in

the notes for Lecture #7.

Theorem 1. Let Σ be an alphabet, and let A,B ⊆ Σ⋆.

(a) If A and B are regular languages then A ∪B is a regular language, as well.

(b) If A and B are regular languages, then A ◦B is a regular language, as well.

(c) If A is a regular language then A⋆ is a regular language as well.

A Useful Minor Result

The following minor result will be repeatedly of use when developing a proof of the above claim.

Lemma 2. Let Σ be an alphabet, and let L ⊆ Σ⋆. Then L is a regular language if and only if L
is the language L(M) of some nondeterministic finite automaton M = (Q,Σ, δ, q0, F ) which

satisfies the following properties.

(a) There are no transitions into q0, at all. That is, q0 /∈ δ(q, σ) for any state q ∈ Q or any

symbol σ ∈ Σλ, so that the only string ω ∈ Σ⋆ such that q0 ∈ δ⋆(q0, ω) is the empty string,

ω = λ.

(b) M has exactly one accepting state, qF , and there are no transitions out of this state. That

is, F = {qF } and δ(qF , σ) = ∅ for every symbol σ ∈ Σλ.

Sketch of Proof. Suppose, first, that L is the language L(M) of some nondeterministic finite

automaton M = (Q,Σ, δ, q0, F ) which satisfies properties (i) and (ii), above. Then, since M
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is a nondeterministic finite automaton, it follows by the results in established in Lecture #6

that L is the language of some deterministic finite automaton as well — that is, L is a regular

language.

Suppose, next, that L is a regular language. Then — once again, by the results established in

Lecture #6 — L = L(M̂) for some nondeterministic finite automaton

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ).

Renaming the states in Q̂ if necessary, we may assume without loss of generality that Q̂ does

not include states called either q0 or qF .

Consider an NFA M = (Q,Σ, δ, q0, F ) such that the following properties are satisfied.

• Q = Q̂ ∪ {q0, qF} — that is, we have added states q0 and qF to the set of states of M̂ .

• The only transition out of the new start state, q0, is a λ-transition to the old start state q̂0
of M̂ . That is, δ(q0, λ) = {q̂0} and δ(q0, σ) = ∅ for every symbol σ ∈ Σ.

• Transitions for the states in Q̂ are unchanged — except that a λ-transition is added from

each state in F̂ to the new state qF . That is, δ(q, σ) = δ̂(q, σ) for every state q ∈ Q̂ and

symbol σ ∈ Σ, while if q ∈ Q̂ then

δ(q, λ) =

{
δ̂(q, λ) ∪ {qF } if q ∈ F̂ ,

δ̂(q, λ) if q /∈ F̂ .

• qF is the only accepting state of M — that is, F = {qF} — and there are no transitions

out of qF . That is, δ(qF , σ) = ∅ for all σ ∈ Σλ.

Using the above rules, the following properties about λ-closures of states are easily estab-

lished.

• If λ /∈ L then the λ-closure of the new start state q0 in M is the union of {q0} and the

λ-closure of the old start state, q̂0, in M̂ .

• On the other hand, if λ ∈ L then the λ-closure of the new start state q0 in M is the union

of {q0, qF} and the λ-closure of the old start state, q̂0, in M̂ .

• For every state q ∈ Q̂, if the λ-closure of q in M̂ does not include any accepting states

(that is, states in F̂ ), then the λ-closure of q in M is the same set as the λ-closure of q
in M̂ .

• For every state q ∈ Q̂, if the λ-closure of q in M̂ does include at least one accepting state,

then the λ-closure of q in M is the union of the λ-closure of q in M̂ and the set {qF }.
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• The λ-closure of the new accepting state qF in M is the set {qF }

It follows by the above that

δ⋆(q0, λ) =

{
{q0, qF } ∪ δ̂⋆(q̂0, λ) if λ ∈ L,

{q0} ∪ δ̂⋆(q̂0, λ) if λ /∈ L,

so that λ ∈ L(M) if and only if λ ∈ L(M̂ ). Furthermore, it can also be proved (by induction1

on the length of the string ω) that if ω ∈ Σ is a non-empty string then

δ⋆(q0, ω) =

{
δ̂⋆(q̂0, ω) ∪ {qF} if ω ∈ L,

δ̂⋆(q̂0, ω) if ω /∈ L.

Thus ω ∈ L(M) if and only if ω ∈ L(M̂ ) as well.

It follows that L(M) = L(M̂) = L and, since M is a nondeterministic finite automaton that

satisfies properties (a) and (b), above, this establishes the claim.

Establishing Closure Under Union

Lemma 3. Let Σ be an alphabet and let L1, L2 ⊆ Σ⋆. If L1 and L2 are both regular languages

then L1 ∪ L2 is a regular language as well.

Sketch of Proof. Let Σ be an alphabet, let L1, L2 ⊆ Σ⋆, and suppose that the languages L1

and L2 are both regular. Then there exist nondeterministic finite automata

M1 = {Q1,Σ, δ1, q1,0, F1} and M2 = {Q2,Σ, δ2, q2,0, F2}

such that L(M1) = L1, L(M2) = L2, and these nondeterministic finite automata have all the

properties described in Lemma 2 — so that, in particular, F1 = {q1,F} for some state q1,F ∈ Q1

and F2 = {q2,F} for some state q2,F ∈ Q2. Renaming states as needed we may assume that

Q1 ∩Q2 = ∅ and that q0 /∈ Q1 and q0 /∈ Q2.

Now consider a nondeterministic finite automaton

M = (Q,Σ, δ, q0, F )

that has M1 and M2 as components and whose structure is as shown in Figure 1 on page 4.

That is,

Q = {q0} ∪Q1 ∪Q2,

1This proof, and other proofs by induction mentioned in this document, are left as exercises.
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Figure 1: A Nondeterministic Finite Automaton with Language L1 ∪ L2

the alphabet Σ is the same as for M1 and M2, the new state, q0, is the start state,

F = F1 ∪ F2 = {q1,F , q2,F },

and the transition function δ : Q× Σλ → P(Q) is defined as follows.

• It is only possible to move from the new start state to one of the old start states, and no

symbols are processed when doing this — so that

δ(q0, λ) = {q1,0, q2,0}

and

δ(q0, σ) = ∅ for every symbol σ ∈ Σ.

• All transitions for states in Q1 are the same in M as they were in M1. That is,

δ(q, σ) = δ1(q, σ) for every state q ∈ Q1 and for all σ ∈ Σλ.

• All transitions for states in Q2 are the same in M as they were in M2. That is,

δ(q, σ) = δ2(q, σ) for every state q ∈ Q2 and for all σ ∈ Σλ.

This can be used to confirm that λ-closures in these automata are related as follows.

• The λ-closure of q in M is the union of {q0}, the λ-closure of q1,0 in M1, and the λ-closure

of q2,0 in M2.
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• If q ∈ Q1 (so that q is a state in the automaton M1) then the λ-closure of q in M is the

same set as the λ-closure of q in M1.

• If q ∈ Q2 (so that q is a state in the automaton M2) then the λ-closure of q in M is the

same set as the λ-closure of q in M2.

It follows from the above that

δ⋆(q0, λ) = {q0} ∪ δ⋆
1
(q1,0, λ) ∪ δ⋆

2
(q2,0, λ).

On the other hand, if ω is a non-empty string in Σ⋆ then it can be proved, by induction on the

length of ω, that

δ⋆(q0, ω) = δ⋆1(q1,0, ω) ∪ δ⋆2(q2,0, ω).

Now, since F = F1 ∪ F2 (and q0 /∈ F ) it immediately follows that if ω ∈ Σ⋆ then ω ∈ L(M)
if and only if either ω ∈ L(M1) or ω ∈ L(M2) (or both). That is — since L1 = L(M1) and

L2 = L(M2) —

L(M) = L1 ∪ L2.

Since L1 ∪ L2 is the language of a nondeterministic finite automaton it follows, by the results

established in Lecture #6, that L1∪L2 is also the language of a deterministic finite automaton.

That is, L1 ∪ L2 is a regular language, as needed to establish the lemma.

Establishing Closure Under Concatenation

Lemma 4. Let Σ be an alphabet and let L1, L2 ⊆ Σ⋆. If L1 and L2 are both regular languages

then L1 ◦ L2 is a regular language as well.

Sketch of Proof. Let Σ be an alphabet, let L1, L2 ⊆ Σ⋆, and suppose that the languages L1

and L2 are both regular. Then there exist nondeterministic finite automata

M1 = {Q1,Σ, δ1, q1,0, F1} and M2 = {Q2,Σ, δ2, q2,0, F2}

such that L(M1) = L1, L(M2) = L2, and these nondeterministic finite automata have all the

properties described in Lemma 2 — so that, in particular, F1 = {q1,F} for some state q1,F ∈ Q1

and F2 = {q2,F} for some state q2,F ∈ Q2. Renaming states as needed we may assume that

Q1 ∩Q2 = ∅ and that q0 /∈ Q1 and q0 /∈ Q2.

Now consider a nondeterministic finite automaton

M = (Q,Σ, δ, q0, F )
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Figure 2: A Nondeterministic Finite Automaton with Language L1 ◦ L2

that has M1 and M2 as components and whose structure is as shown in Figure 2, above. That

is,

Q = {q0} ∪Q1 ∪Q2,

the alphabet Σ is the same as for M1 and M2, the new state, q0, is the start state,

F = F2 = {q2,F},

and the transition function δ : Q× Σλ → P(Q) is defined as follows.

• It is only possible to move from the new start state to the start state for M1, and no

symbols are processed when doing this — so that

δ(q0, λ) = {q1,0}

and

δ(q0, σ) = ∅ for every symbol σ ∈ Σ.

• For every state q ∈ Q1 such that q 6= q1,F (so that q is not M1’s accepting state)

δ(q, σ) = δ1(q, σ) for all σ ∈ Σλ.

• It is possible to move from M1’s accepting state to M2’s start state, and no symbols are

processed when doing so, so that

δ(q1,F , λ) = {q2,0}

and

δ(q1,F , σ) = ∅ for every symbol σ ∈ Σ.

• For every state q ∈ Q2,

δ(q, σ) = δ2(q, σ) for all σ ∈ Σλ.
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This can be used to confirm that λ-closures in these automata are related as follows.

• If λ ∈ L1 (so that q1,F is in the λ-closure of q1,0 in M1) then the λ-closure of q0 in M is

the union of {q0}, the λ-closure of q1,0 in M1, and the λ-closure of q2,0 in M2.

On the other hand, if λ /∈ L1, then the λ-closure of q0 in M is the union of {q0} and the

λ-closure of q1,0 in M1.

• For every state q ∈ Q1, if q1,F is in the λ-closure of q in M1, then the λ-closure of q in M
is the union of the λ-closure of q in M1 and the λ-closure of q2,0 in M2.

On the other hand, if q1,F is not in the λ-closure of q in M1, then the λ-closure of q in M
is the same set as the λ-closure of q in M1.

• For every state q ∈ Q2, the λ-closure of q in M is the same set as the λ-closure of q
in M2.

It follows from the above that

δ⋆(q0, λ) =

{
{q0} ∪ δ⋆

1
(q1,0, λ) ∪ δ⋆

2
(q2.0, λ) if λ ∈ L1,

{q0} ∪ δ⋆
1
(q1,0, λ) if λ /∈ L1.

The following properties can be established by induction on the length of the string, ω:

(a) For all states r1, r2 ∈ Q1 and for every string ω ∈ Σ⋆,

r2 ∈ δ⋆(r1, ω) if and only if r2 ∈ δ⋆
1
(r1, ω).

(b) For every state r2 ∈ Q1 and for every string ω ∈ Σ⋆,

r2 ∈ δ⋆(q0, ω) if and only if r2 ∈ δ⋆1(q1,0, ω).

(c) For all states r1 ∈ Q1 and r2 ∈ Q2, r2 ∈ δ⋆(r1, ω) if and only if there exist strings µ, ν ∈ Σ⋆

such that the following properties are satisfied.

i. ω = µ · ν.

ii. q1,F ∈ δ⋆
1
(r1, µ).

iii. r2 ∈ δ⋆
2
(q2,0, ν).

(d) For every state r2 ∈ Q2, r2 ∈ δ⋆(q0, ω) if and only if there exist strings µ, ν ∈ Σ⋆ such that

the following properties are satisfied.

i. ω = µ · ν.

ii. µ ∈ L1 — so that q1,F ∈ δ⋆
1
(q1,0, µ).
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iii. r2 ∈ δ⋆
2
(q2,0, ν).

(e) For all states r1 ∈ Q2 and r2 ∈ Q,

r2 ∈ δ⋆(r1, ω) if and only if r2 ∈ Q2 and r2 ∈ δ⋆2(r1, ω).

Since F = {q2,0} it now follows by part (d), above, that — for every string ω ∈ Σ⋆ — ω ∈ L(M)
(that is, q2,F ∈ δ⋆(q0, ω) if and only if there exist strings µ, ν ∈ Σ⋆ such that the following

properties are satisfied

i. ω ∈ µ · ν.

ii. µ ∈ L1 — so that q1,F ∈ δ⋆
1
(q1,0, µ).

iii. q2,F ∈ δ⋆
2
(q2, ν) — so that ν ∈ L2.

That is, L(M) = L1 ◦ L2.

Since L1 ◦ L2 is the language of a nondeterministic finite automaton it follows, by the results

established in Lecture #6, that L1 ◦L2 is also the language of a deterministic finite automaton.

That is, L1 ◦ L2 is a regular language, as needed to establish the lemma.

Establishing Closure Under Kleene Star

Lemma 5. Let Σ be an alphabet and let L ⊆ Σ⋆. If L is a regular language then L⋆ is a regular

language as well.

Sketch of Proof. Let Σ be an alphabet, let L ⊆ Σ⋆, and suppose that the language L is regular.

Then there exists a nondeterministic finite automaton

M1 = {Q1,Σ, δ1, q1,0, F1}

such that L(M1) = L, and this nondeterministic finite automaton has all the properties de-

scribed in Lemma 2 — so that, in particular, F1 = {q1,F} for some state q1,F ∈ Q1. Renaming

states as needed we may assume that q0 /∈ Q1.

Now consider a nondeterministic finite automaton

M = (Q,Σ, δ, q0, F )

that has M1 as a component and whose structure is as shown in Figure 3 on page 9. That is,

Q = {q0} ∪Q1,
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Figure 3: A Nondeterministic Finite Automaton with Language L⋆

the alphabet Σ is the same as for M1, the new state, q0, is the start state,

F = {q0},

and the transition function δ : Q× Σλ → P(Q) is defined as follows.

• It is only possible to move from q0 to the start state, q1,0, for M1, and no symbols are

processed when doing this — so that

δ(q0, λ) = {q1,0}

and

δ(q0, σ) = ∅ for every symbol σ ∈ Σ.

• For every state q ∈ Q1 such that q 6= q1,F ,

δ(q, σ) = δ1(q, σ) for all σ ∈ Σλ.

• It is only possible to move from q1,F to q0, and no symbols are processed when doing

that, so that

δ(q1,F , λ) = {q0}

and

δ(q1,F , σ) = ∅ for every symbol σ ∈ Σ.

This can be used to confirm that λ-closures in these automata are related as follows.

• The λ-closure of q0 in M is the union of {q0} and the λ-closure of q1,0 in M1.
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• For every state q ∈ Q1, if q1,F belongs to the λ-closure of q in M1, then the λ-closure

of q in M is the union of the λ-closure of q in M1, the set {q0}, and the λ-closure of q1,0
in M1.

On the other hand, if q1,F does not belong to the λ-closure of q in M1, then the λ-closure

of q in M is the same set as the λ-closure of q in M1.

It follows from the above that

δ⋆(q0, λ) = {q0} ∪ δ⋆1(q0,1, λ)

— so that λ ∈ L(M), since q0 ∈ F .

The following properties are satisfied for every non-empty string ω ∈ Σ⋆ — and can be proved

by mathematical induction on the length of ω:

(a) For every state q ∈ Q1, q ∈ δ⋆(q0, ω) if and only if there exists an integer k such that k ≥ 0,

as well as strings µ1, µ2, . . . , µk, ν ∈ Σ⋆, such that the following properties are satisfied.

i. µi is a non-empty string in L = L(M1) for every integer i such that 1 ≤ i ≤ k. 2

ii. q ∈ δ⋆
1
(q0,1, ν).

iii. ω = µ1 · µ2 . . . µk · ν.

(b) q0 ∈ δ⋆(q0, ω) — so that ω ∈ L(M) — if and only if there exists a positive integer k, as

well as strings µ1, µ2, . . . , µk ∈ Σ⋆, such that the following properties are satisfied.

i. µi is a non-empty string in L = L(M1) for every integer i such that 1 ≤ i ≤ k.

ii. ω = µ1 · µ2 . . . µk.

It follows by the above that L(M) = (L(M1))
⋆ = L⋆.

Since L⋆ is the language of a nondeterministic finite automaton it follows, by the results estab-

lished in Lecture #6, that ⋆ is also the language of a deterministic finite automaton. That is, L⋆

is a regular language, as needed to establish the lemma.

Completion of the Proof

Proof of Theorem 1. Part (a) and (b) of the claim are implied by Lemmas 3 and 4, respectively,

with languages L1 and L2 (in the lemmas) replaced by A and B, respectively. Part (c) of the

claim is implied by Lemma 5, with language L (in the lemma) replaced by A.

2Note that this part of the claim is trivially satisfied when k = 0 because it is “vacuous” (that is, empty) —

because there is no such integer i or string µi in this case, at all.
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