
Lecture #6: Equivalence of Deterministic Finite Automata

and Nondeterministic Finite Automata

Key Concepts

The lecture presented a proof of the following.

Claim. For every alphabet Σ and for every language L ⊆ Σ⋆, the following are equivalent:

(a) L is a regular language. That is, L is the language of a deterministic finite automaton.

(b) L is the language of a nondeterministic finite automaton.

Sketch of Proof. To prove that (a) ⇒ (b), one should consider an arbitrarily chosen alphabet Σ
and language L ⊆ Σ⋆. If L is a regular language then there exists a deterministic finite

automaton

M = (Q,Σ, δ, q0, F )

such that L = L(M). One can define a nondeterministic finite automaton

M̂ = (Q,Σ, δ̂, q0, F )

—- with the same set Q of states, start state q0, set of accepting states F and alphabet Σ —

such that L(M̂) = L(M) = L, by defining the transition function δ̂ : Q × Σλ → P(Q) as

follows: For every state q ∈ Q and for all σ ∈ Σλ,

δ̂(q, σ) =

{
{δ(q, σ)} if σ ∈ Σ,

∅ if σ = λ.

Then the state diagrams for M and M̂ .

To prove that (b) ⇒ (a), one should consider an arbitrarily chosen alphabet Σ and language

L ⊆ Σ⋆, once again — and suppose that L is the language of a nondeterministic finite

automaton

M = (Q,Σ, δ, q0, F ).

1



One can proceed by designing a deterministic finite automaton

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ )

— with the same alphabet Σ but generally, with a different set Q̂ of states, accept state and

set of final states — using the design process from earlier lectures: When processing symbols

in a string, M̂ should remember the set of states in Q that can be reached when the same

symbols have been processed by M — so that states in M̂ correspond to sets of states in M .

Details of the construction of M̂ from M , and a proof of the correctness of this construction,

are given in a supplement for this lecture.

A simulation is something that can be presented to relate the power of two models of compu-

tation. In order to show that the machines described by a second model of computation are

(in some sense) at least as powerful or efficient as the machines described by a first model of

computation, we generally do the following:

(a) Consider an arbitrary machine M , of the type described by the first model of computation.

(b) Use M to define another machine M̂ , of the type described by the second model of

computation.

(c) Prove that M̂ solves the same problem as M .

The above claim was (arguably) proved by giving two simulations. Simulations will be used

again, later on in this course.

2


