Lecture #5: Introduction to Nondeterministic Finite Automata Key Concepts

Definition 1. A *nondeterministic finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite, nonempty, set of *states*;
- Σ is an *alphabet* such that $Q \cap \Sigma = \emptyset$;
- $\delta: Q \times \Sigma_{\lambda} \to \mathcal{P}(Q)$ is a *transition function*;
- $q_0 \in Q$ is the *start state*; and
- $F \subseteq Q$ is the set of *accept states*.

Here, $\Sigma_{\lambda} = \Sigma \cup \{\lambda\}$ and δ is a *total* function from $Q \times \Sigma_{\lambda}$ to $\mathcal{P}(Q)$.

Definition 2. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a nondeterministic finite automaton. The, for $q \in Q$, $Cl_{\lambda}(q)$ is the *set of states* that reachable from q by following *zero or more* λ -transitions.

 $Cl_{\lambda}(q)$ is sometimes called the λ -closure of the state q.

Definition 3. Let $M = (Q, \Sigma, \delta, q_0, F)$. The *extended transition function* of M is the total function

$$\delta^{\star}: Q \times \Sigma^{\star} \to \mathcal{P}(Q)$$

such that, for $q \in Q$ and $\omega \in \Sigma^{\star}$,

$$\delta^{\star}(q,\omega) = \begin{cases} \mathcal{C}I_{\lambda}(q) & \text{if } \omega = \lambda, \\ \bigcup_{r \in \delta^{\star}(q,\mu)} \left(\bigcup_{s \in \delta(r,\sigma)} \mathcal{C}I_{\lambda}(s) \right) & \text{if } \omega = \mu \cdot \sigma \text{ for } \mu \in \Sigma^{\star} \text{ and } \sigma \in \Sigma. \end{cases}$$

Definition 4. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a nondeterministic finite automaton. Then, for every string $\omega \in \Sigma^*$, M accepts ω if

$$\delta^{\star}(q_0,\omega) \cap F \neq \emptyset$$

and M *rejects* ω otherwise.

Definition 5. Let $M = (Q, \Sigma, \delta, q_0, F)$. Then the *language* of M, L(M), is the set of strings $\omega \in \Sigma^*$ such that M accepts ω .