Lecture #5: Introduction to Nondeterministic Finite Automata Lecture Presentation

Main Points

A Language and a Nondeterministic Finite Automaton

Let $\Sigma = \{a, b\}$ and let $L \subseteq \Sigma^*$ be the following language:

 $L = \{ w \in \Sigma^{\star} \mid \omega \text{ ends with aba} \}.$

Consider the following *nondeterministic* finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ with the above alphabet Σ and the following transition diagram.

Problems To Be Solved

1. State the *type* of the transition function, δ , that is included as a part of this nondeterministic finite automaton.

Solution:

2. Give a *transition table* for this transition function, δ . *Solution:*

3. The lecture notes introduced *trees of possibilities* that showed possible executions of a given nondeterministic finite automaton on a given input string. Draw the tree of possibilities showing the possible executions of this nondeterministic finite automaton on the input string aaba.

Solution:

4. Compute $Cl_{\lambda}(q)$ for every state, q, in this nondeterministic finite automaton. *Solution:*

5. Use the properties of the extended transition function, given in the lecture notes, to compute $\delta^*(q_0, aaba)$.

- 6. Use set-theoretic notation (if needed) to describe each of these sets, as precisely you can.
 - (a) The set, S_0 , of strings in Σ^* whose processing can end in state q_0 , that is, the set

$$\{\omega \in \Sigma^* \mid q_0 \in \delta^*(q_0, \omega)\}$$

Solution:

(b) The set, S_1 , of strings in Σ^{\star} whose processing can end in state q_1 , that is, the set

$$\{\omega \in \Sigma^* \mid q_1 \in \delta^*(q_0, \omega)\}\$$

Solution:

(c) The set, S_2 , of strings in Σ^{\star} whose processing can end in state q_2 , that is, the set

$$\{\omega \in \Sigma^* \mid q_2 \in \delta^*(q_0, \omega)\}\$$

(d) The set, S_3 , of strings in Σ^{\star} whose processing can end in state q_3 , that is, the set

$$\{\omega \in \Sigma^{\star} \mid q_3 \in \delta^{\star}(q_0, \omega)\}$$

Solution:

(e) The set, S_4 , of strings in Σ^{\star} whose processing can end in state q_4 , that is, the set

$$\{\omega \in \Sigma^* \mid q_4 \in \delta^*(q_0, \omega)\}\$$

7. Describe a *proof technique*, that you learned about in a prerequisite for this course, that could be used to *prove* that S_0 is the set you claimed, when answering part (a) of the previous question.

Solution:

8. Describe a *proof technique*, that you learned about in a prerequisite for this course, that could be used to *prove* that S_0 is the set you claimed, when answering part (a) of the previous question.

Simpler arguments could be given to prove the correctness of your claims about S_1 , S_2 , S_3 , and S_4 after that. Why?

Answer:

9. Assuming that your answers for the above questions are correct, explain why it now follows that the language of this nondeterministic finite automaton is the set of strings in Σ^* that end with aba.