
Lecture #4: DFA Design and Verification — Part Two

Lecture Presentation

Main Points

1



Problem To Be Solved

Let Σ = {a,b} and let L ⊆ Σ
⋆ be the following language:

L = {w ∈ Σ
⋆ | ω ends with abb}.

The problem to be solved — which was also considered in the previous lecture presentation

— is to design a deterministic finite automaton with alphabet Σ, whose language is L, and

to prove that this DFA is correct.

A First Attempt

We first tried to design a DFA for this language, under the assumption that the only information

that the DFA would need to remember, about the string that has been processed so far, is

whether it belongs to the above language L.

This would correspond to a deterministic finite automaton with two states, q0 and q1, corre-

sponding to the set

S0 = {ω ∈ Σ
⋆ | ω does not end with “abb”}

— which corresponds to the state q0 — and the set

S1 = {ω ∈ Σ
⋆ | ω does end with “abb”}

— which corresponds to the state q1. Since λ ∈ S0, q0 is the start state. Since S1 = L (so that

S1 ⊆ L) and S0 = Σ
⋆ \ L (so that S0 ∩ L = ∅) q1 should be the only accepting state. That is,

F = {q1}.

This first attempt to design a deterministic finite automaton, for L, failed .

How This Failed:

What Could Be Learned From This:



A Second Attempt

What Must the DFA Remember?

Representation Using Subsets of Σ⋆



Initial Sanity Checks



Identifying Transitions



A Third Attempt

What Went Wrong — Which Transition was not Well Defined? Why?

What Must the DFA Remember?

Representation Using Subsets of Σ⋆



Initial Sanity Checks



Identifying Transitions



What We Have Now:



Writing a Proof Correctness

What Result, from the Lecture Notes, is Useful?

What Things Must Be Established?

A detailed list of the properties that should be established is as follows.



Other Things to Think About, or To Do



Verification vs. Testing


