Lecture #2: Introduction to Deterministic Finite Automata Key Concepts

Definition 1. A *deterministic finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite, nonempty, set of *states*;
- Σ is an *alphabet* such that $Q \cap \Sigma = \emptyset$;
- $\delta: Q \times \Sigma \to Q$ is a *transition function*;
- $q_0 \in Q$ is the *start state*; and
- $F \subseteq Q$ is the set of *accept states*.

In particular, δ is a *total* function from $Q \times \Sigma$ to Q.

Definition 2. Consider a deterministic finite automaton $M = (Q, \Sigma, \delta, q_0, F)$. The *extended transition function* of M is a function

$$\delta^\star: Q \times \Sigma^\star \to Q$$

describing the state that can be reached from a given state when processing a *string*: For every state $q \in Q$ and every string $\omega \in \Sigma^*$,

$$\delta^{\star}(q,\omega) = \begin{cases} q & \text{if } \omega = \lambda, \\ \delta(\delta^{\star}(q,\mu),\sigma) & \text{if } \omega = \mu \cdot \sigma \text{ for a string } \mu \in \Sigma^{\star} \text{ and symbol } \sigma \in \Sigma. \end{cases}$$

Definition 3. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton and let $\omega \in \Sigma^*$. Then M accepts ω if $\delta^*(q_0, \omega) \in F$, and M rejects ω otherwise.

Definition 4. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton. The *language* of M, L(M), is the set

$$\{\omega \in \Sigma^* \mid M \text{ accepts } \omega\}.$$

Definition 5. Let Σ be an alphabet. Then a language $L \subseteq \Sigma^*$ is a *regular language* if L is the language, L(M), of some deterministic finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ (with the same alphabet Σ).