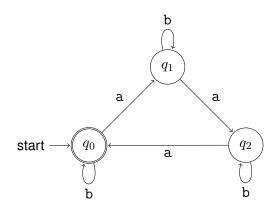
Lecture #2: Introduction to Deterministic Finite Automata Lecture Presentation

Review of Preparatory Material

Problems To Be Solved

Consider a deterministic finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ that has alphabet $\Sigma = \{a, b\}$ and that can be represented as follows.



One can see from this picture that $Q = \{q_0, q_1, q_2\}$, q_0 is the start state (as the representation of M as a 5-tuple also shows) and that $F = \{q_0\}$.

- 1. Consider the *transition function* $\delta : Q \times \Sigma \rightarrow Q$ for this deterministic finite automaton.
 - (a) Complete this specification of this function.

 $\delta(q_0, \mathbf{a}) = \delta(q_1, \mathbf{a}) = \delta(q_2, \mathbf{a}) =$ $\delta(q_0, \mathbf{b}) = \delta(q_1, \mathbf{b}) = \delta(q_2, \mathbf{b}) =$

- (b) Give a *transition table* for this deterministic finite automaton.

- 2. Consider the string $\omega = abaabb.$
 - (a) Complete the following table to compute $\delta^{\star}(q_0,\omega)$.

$$\delta^{\star}(q_0, \lambda) = \ \delta^{\star}(q_0, \mathtt{a}) = \ \delta^{\star}(q_0, \mathtt{ab}) =$$

(b) Complete the following derivation of $\delta^{\star}(q_0, \omega)$ (which uses the definition of the extended transition function directly).

$$\begin{split} \delta^\star(q_0,\omega) &= \delta^\star(q_0,\texttt{abaabb}) \\ &= \delta(\delta^\star(q_0,\texttt{abaab}),\texttt{b}) \\ &= \end{split}$$

3. What are the states q_0 , q_1 and q_2 used to keep track of, as symbols in an input string are being processed?

- 4. Now let $S_i = \{\omega \in \Sigma^* \mid \delta^*(q_0, \omega) = q_i\}$ for i = 0, i = 1, and for i = 2.
 - (a) How are these sets related to the languages L_0 , L_1 and L_2 that were considered in the previous lecture presentation? Why?

(b) What can be concluded, now, about S_0 , S_1 , S_2 , using the results that were stated and proved in the previous lecture presentation?

(c) What is the language of $M\ref{model}$ How can this be proved?