Lecture #1: Welcome to CPSC 351! Lecture Presentation

Review of Preparatory Material

Suggestion: Use this page to note things that you would like to ask the instructor or a teaching assistant about, during or after the lecture presentation.

Course Learning Goals, Topics, and Organization

Review of Material from Discrete Mathematics

Alphabets, Strings and Languages

A Problem To Be Solved

Let $\Sigma = \{a, b\}$. Suppose that $L_0, L_1, L_2 \subseteq \Sigma^*$, and that these languages satisfy the following properties.

- (a) $\lambda \in L_0$, $\lambda \notin L_1$, and $\lambda \notin L_2$.
- (b) For every string $\omega \in \Sigma^*$ such that $\omega \in L_0$, $\omega \cdot a \in L_1$, $\omega \cdot a \notin L_0$, and $\omega \cdot a \notin L_2$.
- (c) For every string $\omega \in \Sigma^*$ such that $\omega \in L_0$, $\omega \cdot \mathbf{b} \in L_0$, $\omega \cdot \mathbf{b} \notin L_1$, and $\omega \cdot \mathbf{b} \notin L_2$.
- (d) For every string $\omega \in \Sigma^*$ such that $\omega \in L_1$, $\omega \cdot a \in L_2$, $\omega \cdot a \notin L_0$, and $\omega \cdot a \notin L_1$.
- (e) For every string $\omega \in \Sigma^*$ such that $\omega \in L_1$, $\omega \cdot \mathbf{b} \in L_1$, $\omega \cdot \mathbf{b} \notin L_0$, and $\omega \cdot \mathbf{b} \notin L_2$.
- (f) For every string $\omega \in \Sigma^*$ such that $\omega \in L_2$, $\omega \cdot a \in L_0$, $\omega \cdot a \notin L_1$, and $\omega \cdot a \notin L_2$.
- (g) For every string $\omega \in \Sigma^*$ such that $\omega \in L_2$, $\omega \cdot \mathbf{b} \in L_2$, $\omega \cdot \mathbf{b} \notin L_0$, and $\omega \cdot \mathbf{b} \notin L_1$.

One Claim To Try To Prove

Claim 1. Let Σ and L_0 be as given above. Then, for every string $\omega \in \Sigma^*$, $\omega \in L_0$ if and only if the number of copies of "a" in ω is divisible by 3.

Choosing a Proof Technique:

How a Proof Would Start:

What Happens After This?

Another Proof To Try To Prove

Claim 2. Let Σ , L_0 , L_1 and L_2 be as given above. Then the following properties are satisfied.

- (a) For every string $\omega \in \Sigma^*$, $\omega \in L_0$ if and only if the number of copies of "a" in ω is divisible by 3. In other words, $\omega \in L_0$ if and only if the number of copies of "a" in ω is congruent to 0 modulo 3.
- (b) For every string $\omega \in \Sigma^*$, $\omega \in L_1$ if and only if the number of copies of "a" in ω is congruent to 1 modulo 3.
- (c) For every string $\omega \in \Sigma^*$, $\omega \in L_2$ if and only if the number of copies of "a" in ω is congruent to 2 modulo 3.

Choosing a Proof Technique:

How a Proof Would Start:

What Happens After This?

OK. The Proof Can Be Completed. What Do We Do Next?

How Do I Assess My Work?

How Can I Keep This Organized?