CPSC 351 — Tutorial Exercise #17 Additional Practice Problem

This problem will not be discussed during the tutorial, and a solution for this problem will not be made available. It can be used as a "practice" problem that can help you practice skills considered in the lecture presentation for Lectures #21, or in Tutorial Exercise #17.

1. Suppose, now, that Ω is a *finite* sample space, $\mathsf{P} : \Omega \to \mathbb{R}$ is a probability distribution, and $X : \Omega \to \mathbb{R}$. Let $\mu = \mathsf{E}[X]$ and let $\sigma^2 = \mathsf{var}(X)$.

Let $Y : \Omega \to \mathbb{R}$ such that $Y = X - \mu$. That is, $Y(\alpha) = X(\alpha) - \mu$ for every outcome $\alpha \in \Omega$.

- (a) Prove that E[Y] = 0.
- (b) Prove that $\operatorname{var}(Y) = \sigma^2$ (so that $\operatorname{var}(Y) = \operatorname{var}(X)$).
- (c) Prove that $E[Y^2] = \sigma^2$ as well.

Now let $a, b \in \mathbb{R}$ such that a > 0 and $b \ge 0$.

(d) Prove that

$$\mathsf{P}(Y \ge a) = \mathsf{P}(Y + b \ge a + b)$$

$$\leq \mathsf{P}((Y + b)^2 \ge (a + b)^2)$$

$$\leq \frac{\mathsf{E}[(Y + b)^2]}{(a + b)^2}$$

Hint: Notice that Y + b and $(Y + b)^2$ can also be considered to be random variables. Consider the use of other results from the preparatory reading for this lecture.

(e) Consider what this means, when $b = \frac{\sigma^2}{a}$, in order to complete a proof of *Cantelli's Inequality*.