
CPSC 351 — Tutorial Exercise #15

Additional Practice Problems

These problems will not be discussed during the tutorial, and solutions for these problems will

not be made available. They can be used as “practice” problems that can help you practice

skills considered in the lecture presentation for Lectures #18 and #19, or in Tutorial Exer-

cise #15.

A binary tree is a recursively defined data structure consisting of a finite number of nodes and

relationships between them:

• An empty tree does not include any nodes, at all.

• Every other binary tree includes a node, called the root of the tree, along with a left

subtree and a right subtree, which are both binary trees. The left and right subtrees

do not include the root and do not have any nodes in common.

• In pictures, the left and right subtrees are shown below the root (the left and right, re-

spectively); if the subtrees are not empty then edges are shown between the root and

the roots of these subtrees.

The size of a binary tree is the number of nodes in the tree.

For example, a binary tree with size one (so that the left and right subtrees of the root are

empty tree) is drawn as follows.

One example of a binary tree with size two is as follows.

Here, the left subtree is an empty tree and the right subtree is a binary tree with size one.

Two example binary trees with size three are as follows.

1



Consider now a large set (or “universe”) U that has a total order : There is a binary relation,

“<”, between elements of U which satisfies the following properties.

(a) Exactly one of the following properties is satisfied, for each pair of (not necessarily distinct)

elements α, β ∈ U : Either

α < β, β < α, or α = β.

(b) For all α, β, γ ∈ U , if α < β and β < γ then α < γ.

A binary search tree, that stores elements of U , is a binary tree T satisfying the following

properties.

(a) Each node in T stores an element of U . The set of elements of U , that are stored at the

nodes of T is the subset of U “represented by” T .

(b) If T is not an empty tree, α is the element of U stored at the root of T , and β is one of the

elements of U stored at a node in the left subtree of T , then β < α.

(c) If T is not an empty tree, α is the element of U stored at the root of T , and γ is one of the

elements of U stored at a node in the right subtree of T , then α < γ.

(d) The left and right subtrees of T are also binary search trees (so that each satisfies prop-

erties (a), (b) and (c) as well).

For example, suppose that U = Z, the relation “<” is the expected numerical order, and

consider a binary search tree of size one, storing the set {3} — so that 3 is stored at the root:

3

If 1 is to be added to the set that is represented (so that the tree would represent the set {1, 3}),

then — since 1 < 3 — a node storing 1 must be added to the left subtree:

2



1

3

Finally, if 2 is to be added to the set that is represented (so that the tree would represent the

set {1, 2, 3}) then — since 2 < 3 — a node storing 2 must be added to the left subtree, which

has 1 stored at the root. Since 2 > 1, a node storing 2 must be added to the right subtree of

the left subtree:

1

2

3

On the other hand, if we inserted the same values into an initially empty binary search tree,

but we used a different order — first 2, then 1 and, finally, 3 —then the following binary search

tree is produced, instead.

1

2

3

In general, we might consider an arbitrary (infinite or large) universe U that has a total order,

“<”. For a positive integer n, we might consider a set of n values (or keys) k1, k2, . . . , kn ∈ U ,

such that

k1 < k2 < k3 < · · · < kn−1 < kn

and we might consider the experiment of inserting these values into an initially empty binary

search tree, in some order. However, in order to keep things simple, let us suppose that

U = Z, “<” is the usual less than ordering for integers, and that ki = i for each integer i such

that 1 ≤ i ≤ n.

Thus we are inserting the integers 1, 2, . . . , n into an initially empty binary search tree, in some

order. Each outcome of the experiment being considered can be represented as a sequence

(α1, α2, . . . , αn)

consisting of the integers 1, 2, . . . , n, listed in some order — that is, a permutation of the

sequence of integers 1, 2, . . . , n. The sample space Ω is the set of all such permutations. For

3



example, if n = 3 then

Ω = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} (1)

— a set of size 3! = 6.

1. Draw the binary search tree corresponding to each of the outcomes in the above sample

space Ω (corresponding to binary search trees with size n = 3).

In a binary search tree, the left child of the root is the node that is the roof of the left subtree

— so that there is no left child of the root if the left subtree is the empty tree. Similarly, the

right child of the root is the node that is the root of the right subtree — so that there is no

right child of the root if the right subtree is the empty tree. Each node can be viewed as the

root of the subtree that includes that node and the nodes below it. We can now use this idea

(considering the subtrees with a given node at the root, instead of the entire tree) to define the

left child and the right child of each of nodes in the tree (besides the root) as well.

If x and y are nodes in a binary search tree then x is the parent of y if and only if y is either

the left child of x or the right child of x. The root of a binary search tree does not have a root

in that tree, while every other node has exactly one parent.

A node in a binary search tree is a leaf if and only if it does not have any children in that tree.

Otherwise, it is an internal node in the binary search tree.

These terms — left child , right child , parent , leaf and internal node — will be used in

examples involving binary search trees in the rest of this course.

2. Let P : Ω → R be the uniform probability distribution for this experiment (using the

sample, space, Ω, as shown at line (1)).

(a) Prove that the probability that “1 is stored at the root of the binary search tree” is 1

3
.

(b) Prove that the probability that “1 is stored at a leaf” is 1

2
.

3. Compute the conditional probability that 2 is stored at a leaf, given that 1 is stored at the

root.

4. Consider the following events:

• A: 2 is stored at a leaf.

• B: 1 is stored at the root.

Is event A attracted to event B, indifferent to event B, or repelled by event B?

4


