Computer Science 351 Application: Randomly Constructed Binary Search Trees

Instructor: Wayne Eberly

Department of Computer Science University of Calgary

Lecture #24

Learning Goals

Learning Goals:

- Learn about another application of probability theory to the analysis of data structures and algorithms.
- Applying this is somewhat tricky, in this case, because the identification of a *sample space*, that allows the analysis to be carried out, is somewhat challenging.

Note: It is possible that students will also see a version of this material in CPSC 331.

Randomly Constructed Binary Search Trees

- Let *n* be a positive integer.
- Consider the binary search trees, with size *n*, storing the integers 1, 2, . . . , *n*.
- Since these integers can be inserted into an initially empty binary search tree in any order, this experiment can be modelled using a *sample space*, Ω*n*, which includes all *permutations*

 $(\alpha_1, \alpha_2, \ldots, \alpha_n)$

of the set of integers between 1 and *n* — listing the order in which these integers are inserted.

• It follows that $|\Omega_n| = n!$

One Probability Distribution...

• It is *assumed* that all permutations are equally — so that the *uniform probability distribution*

$$
P_1:\Omega_n\to\mathbb{R}
$$

is used. Then

$$
\mathsf{P}_1(\sigma) = \frac{1}{|\Omega_n|} = \frac{1}{n!}
$$

for every outcome $\sigma \in \Omega_n$.

Consider *another* probability distribution

 $P_2 : \Omega_n \to \mathbb{R}$

such that, for each element $\sigma \in \Omega_n$, $P_2(\sigma)$ is the probability that σ is returned by an execution of the following.

- 1. Choose an integer *i* such that 1 ≤ *i* ≤ *n* choosing each with probability $\frac{1}{n}$.
- 2. Choose a permutation

$$
\mu=(\beta_1,\beta_2,\ldots,\beta_{n-1})
$$

uniformly from Ω_{n-1} — so that each permutation, μ , is chosen with probability $\frac{1}{|\Omega_{n-1}|} = \frac{1}{(n-1)!}$.

3. For 1 ≤ *j* ≤ *n*, let

$$
\gamma_j = \begin{cases} \beta_j & \text{if } 1 \le \beta_j \le i - 1, \\ \beta_j + 1 & \text{if } i \le \beta_j \le n - 1, \end{cases}
$$

so that $(\gamma_1, \gamma_2, \ldots, \gamma_{n-1})$ includes the numbers

1, 2, . . . , *i*, *i* + 1, *i* + 2, . . . , *n* = {*j* ∈ N | 1 ≤ *j* ≤ *n* and *j* 6= *i*}

in some order (with each of the integers in this set).

4. Return the permutation

$$
(i, \gamma_1, \gamma_2, \ldots, \gamma_{n-1}).
$$

- Every permutation σ ∈ Ω*ⁿ* corresponds to exactly *one* choice of the integer *i*, at line 1, and exactly *one* choice of the permutation, $\mu \in \Omega_{n-1}$, at line 2,
- This can be used to show that

$$
P_2(\sigma) = P_1(\sigma) = \frac{1}{n!}
$$

for every permutation $\sigma \in \Omega_n$ — so that the probability distributions, P_1 and P_2 , are the same.

Consider *yet another* probability distribution

 $P_3: \Omega_n \to \mathbb{R}$

such that, for each element $\sigma \in \Omega_n$, $P_3(\sigma)$ is the probability that σ is returned by an execution of the following.

- 1. Choose an integer *i* such that 1 ≤ *i* ≤ *n* choosing each with probability $\frac{1}{n}$.
- 2. Choose a subset S_l of the set of integers $2, 3, \ldots, n$ with size *i* − 1 — choosing every such subset with the same probability, $\binom{n-1}{i-1}$ $\binom{n-1}{i-1}^{-1} = \frac{(i-1)! \times (n-i)!}{(n-1)!}$.
- 3. Set *S^R* to be the set of integers between 2 and *n* − 1 that do not belong to S_l — so that S_R is a set, with size $n - i$, such that $S_l \cap S_R = \emptyset$ and $S_l \cup S_R = \{2, 3, \ldots, n\}.$

4. Choose a permutation

$$
\mu=(\beta_1,\beta_2,\ldots,\beta_{i-1})
$$

uniformly from Ω_{i-1} — so that each permutation, μ , is chosen with probability $\frac{1}{|\Omega_{i-1}|} = \frac{1}{(i-1)!}$. *Note:* μ is a sequence with length zero if $i = 1$, so that $i - 1 = 0$.

5. Choose a permutation

$$
\nu=(\gamma_1,\gamma_2,\ldots,\gamma_{n-i})
$$

uniformly from Ω_{n-i} — so that each permutation, μ , is chosen with probability $\frac{1}{|\Omega_{n-i}|} = \frac{1}{(n-i)!}$. *Note:* μ is a sequence with length zero if $i = n$, so that $n - i = 0$.

Suppose, now, that

$$
S_L = \{k_1, k_2, \ldots, k_{i-1}\} \text{ and } S_R = \{\ell_1, \ell_2, \ldots, \ell_{n-i}\}
$$

where

$$
k_1 < k_2 < \cdots < k_{i-1} \quad \text{and} \quad \ell_1 < \ell_2 < \cdots < \ell_{n-i}.
$$

- 6. Return the permutation $(\alpha_1, \alpha_2, \ldots, \alpha_n) \in \Omega_n$ that is defined as follows:
	- $\alpha_1 = i$.
	- If $2 < i < n$ and $i \in S_i$ so that $i = k_h$, for an integer *h* such that $1 \le h \le i - 1$, then $\alpha_i = \beta_h$ (for β_h as given at line 4, above).
	- If $2 < i < n$ and $i \in S_R$ so that $i = \ell_h$, for an integer *h* such that $1 \leq h \leq n - i$, then $\alpha_i = n - i + \gamma_h$ (for γ_h as given at line 5, above).

- Every permutation σ ∈ Σ*ⁿ* corresponds to exactly *one* choice of the integer *i* at line 1, exactly *one* choice of the subset *S^L* at line 2, exactly *one* choice of the permutation µ ∈ Σ*i*−¹ at line 4, and exactly *one* choice of the permutation $\mu \in \Sigma_{n-i}$ at line 5.
- This can be used to show that

$$
P_3(\sigma) = P_2(\sigma) = P_1(\sigma) = \frac{1}{n!}
$$

for every permutation $\sigma \in \Omega_n$ — so that the probability distribution P_3 is the same as the probability distributions P_1 and P_2 .

- • For each permutation $\sigma \in \Omega_n$, let \mathcal{T}_{σ} be the binary search tree, storing 1, 2, . . . , *n*, obtained by storing integers into an initially empty binary search tree — in the order given by σ .
- Let $d : \Omega_n \to \mathbb{R}$ such that, for $\sigma \in \Omega_n$, $d(\sigma)$ is the **depth** of the binary search tree T_{σ} .
- Let $xd: \Omega_n \to \mathbb{R}$ such, that, for $\sigma \in \Omega_n$, $xd(\sigma) = 2^{d(\sigma)}$.
- The value of these random variables are shown, for the case that $n = 3$, on the following slides.

$$
d(\sigma) = 2 \text{ and } xd(\sigma) = 2^2 = 4.
$$

$$
d(\sigma) = 2 \text{ and } xd(\sigma) = 2^2 = 4.
$$

 $d(\sigma) = 1$ and $xd(\sigma) = 2^1 = 2$.

 $d(\sigma) = 1$ and $xd(\sigma) = 2^1 = 2$.

$$
d(\sigma) = 2 \text{ and } xd(\sigma) = 2^2 = 4.
$$

 $d(\sigma) = 2$ and $xd(\sigma) = 2^2 = 4$.

It follows, by the above, that if $n = 3$ then

$$
\begin{aligned} \mathsf{E}[d] & = \sum_{\sigma \in \Sigma_3} d(\sigma) \times \mathsf{P}(\sigma) \\ & = d((1,2,3)) \times \mathsf{P}((1,2,3)) + d((1,3,2)) \times \mathsf{P}((1,3,2)) \\ & + d((2,1,3)) \times \mathsf{P}((2,1,3)) + d((2,3,1)) \times \mathsf{P}((2,3,1)) \\ & + d((3,1,2)) \times \mathsf{P}((3,1,2)) + d((3,2,1)) \times \mathsf{P}((3,2,1)) \\ & = 2 \times \frac{1}{6} + 2 \times \frac{1}{6} + 1 \times \frac{1}{6} + 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 2 \times \frac{1}{6} \\ & = \frac{10}{6} = \frac{5}{3}. \end{aligned}
$$

It also follows, by the above, that if $n = 3$ then

$$
E[xd] = \sum_{\sigma \in \Sigma_3} xd(\sigma) \times P(\sigma)
$$

= $xd((1,2,3)) \times P((1,2,3)) + xd((1,3,2)) \times P((1,3,2))$
+ $xd((2,1,3)) \times P((2,1,3)) + xd((2,3,1)) \times P((2,3,1))$
+ $xd((3,1,2)) \times P((3,1,2)) + xd((3,2,1)) \times P((3,2,1))$
= $4 \times \frac{1}{6} + 4 \times \frac{1}{6} + 2 \times \frac{1}{6} + 2 \times \frac{1}{6} + 4 \times \frac{1}{6} + 4 \times \frac{1}{6}$
= $\frac{20}{6} = \frac{10}{3}$.

Now let *i* be an integer such that $1 \le i \le n$. Let T_i be a binary search tree storing the integers $1, 2, \ldots, i - 1$ and let T_R storing the integers $i + 1$, $i + 2$, ..., $n -$ so that one of the binary search trees that stores the integers 1, 2, . . . , *n* is the binary search tree T that has *i* at the root, with left subtree T_l and right subtree *TR*:

Let T_R be the binary search tree produced by subtracting *i* from each of the integers stored at nodes — so that \mathcal{T}_R stores the integers 1, 2, . . . , *n* − *i*.

Consider the following values.

- *s*: The number of permutations in Σ*ⁿ* that would produce *T*.
- s_L : The number of permutations in Σ_i that would produce T_L .
- *sR*: The number of permutations in Σ*n*−*ⁱ* that would produce T_R .

- *p*: Probability that *T* is generated when using the described experiment to produce a binary search tree storing 1, 2, . . . , *n*.
- p_l : Probability that T_l is generated when using the described experiment to produce a binary search tree storing 1, 2, . . . , *i*.
- p_B : Probability that T_B is generated when using the described experiment to produce a binary search tree storing 1, 2, . . . , *n* − *i*.

Since the *uniform probability distribution* is being used in this case,

$$
\rho = \frac{s}{|\Omega_n|} = \frac{s}{n!},
$$

$$
\rho_L = \frac{S_L}{|\Omega_i|} = \frac{s_L}{i!},
$$

and

$$
p_R = \frac{s_R}{|\Omega_{n-i}|} = \frac{s_R}{(n-i)!}.
$$

In order to compute *s*, note the following.

- There is *one* way to choose the first element in an outcome (from Ω_n) — this must always be *i*, so that *i* is at the root of the binary search tree that is generated.
- There are exactly $\binom{n-1}{i-1}$ *n*^{−1}) ways to choose the other locations (for the ordering of 1, 2, . . . , *n* being generated) of integers between 1 and *i*.
- For each of these, there are (by definition) s_l ways to choose the values placed in these locations, in order for the left subtree generated to be T_L .
- For each of these, there are s_R ways to choose the values placed in the remaining locations, in order for the right subtree to be T_R .

It follows that $s = \binom{n-1}{i-1}$ $_{i-1}^{n-1})\times$ $s_L\times s_R$, so that

$$
p = \frac{s}{|\Omega_n|}
$$

=
$$
\frac{\binom{n-1}{i-1} \times s_L \times s_R}{n!}
$$

=
$$
\frac{\frac{(n-1)!}{(i-1)!\times(n-i)!} \times s_L \times s_R}{n \times (n-1)!}
$$

=
$$
\frac{1}{n} \times \frac{s_L}{(i-1)!} \times \frac{s_R}{(n-i)!}
$$

=
$$
\frac{1}{n} \times \frac{s_L}{|\Omega_{i-1}|} \times \frac{s_R}{|\Omega_{n-i}|}
$$

=
$$
\frac{1}{n} \times p_L \times p_R.
$$

Now, for $i \geq 1$, let $xd_i : \Omega_i \to \mathbb{R}$ be the random variable, defined for the sample space Ω_i , whose value is the exponential depth of the binary search tree (storing the integers 1, 2, . . . , *i*) $\mathsf g$ enerated using whatever outcome, from Ω_i , that is being considered.

- It follows by the analysis given above (in which binary search trees storing the integers 1, 2 and 3 were considered) that $xd_3 = \frac{10}{3}$.
- Let us "define" xd_0 to be 0. This will not really change anything, but it will make it easier to produce general formulas for some of what we want to consider.

Suppose *n* is a positive integer. Consider another sequence of random variables $xd_{n,1}$, $xd_{n,2}$, ..., $xd_{n,n}$ such that, for every integer *i* such that $1 \le i \le n$ and for every outcome

$$
\sigma = (j_1, j_2, \dots, j_n) \in \Omega_n,
$$

$$
x d_{n,i}(\sigma) = \begin{cases} x d_n(\sigma) & \text{if } j_1 = i, \\ 0 & \text{if } j_1 \neq i. \end{cases}
$$

Then, for $n \geq 2$, $xd_{n,i}(\sigma) = xd_n(\sigma) > 0$ if and only if *i* is stored at the root of the binary search tree constructed using insertion order σ — and

$$
xd_n = xd_{n,1} + xd_{n,2} + \cdots + xd_{n,n}.
$$

Consider, again, a binary search tree *T* with the form

Once again, let T_R be the binary search tree produced by subtracting *i* from each of the integers stored at nodes — so that T_R stores the integers $1, 2, \ldots, n - i$.

If the binary search trees T , T_L and T_R have depths *d*, d_L and *d^R* respectively, then

$$
d = \max(d_L, d_R) + 1.
$$

Thus if the *exponential depths* of these trees are $xd = 2^d$, $xd_L=2^{d_L}$ and $xd_R=2^{d_R}$, respectively, then

$$
xd = 2d
$$

= 2<sup>max(d_L,d_R) + 1
= 2 × 2^{max(d_L,d_R)}
= 2 × max(2^{d_L}, 2^{d_R})
= 2 × max(xd_L, xd_R)
≤ 2 × (xd_L + xd_R).</sup>

Recall, as well, that if p , p_l and p_R are the probabilities that T , T_L and T_R are obtained (when randomly producing binary search trees with sizes $n, i - 1$ and $n - i$, respectively) then

$$
p=\frac{1}{n}\times p_L\times p_R.
$$

These equations can be applied to establish that

$$
E[xd_{n,i}] = \frac{2}{n} \times (E[xd_{i-1}] + E[xd_{n-i}]).
$$

Exercise: Establish this bound.

Now, since $xd_n = xd_{n,1} + xd_{n,2} + \cdots + xd_{n,n}$, it follows that

$$
E[xd_n] = E\left[\sum_{i=1}^n x d_{n,i}\right]
$$

= $\sum_{i=1}^n E[xd_{n,i}]$ (by Linearity of Expectation)
 $\leq \sum_{i=1}^n \left(\frac{2}{n} \times (E[xd_{i-1}] + E[xd_{n-i}])\right)$
= $\frac{4}{n} \sum_{i=0}^{n-1} E[xd_i].$

The above inequality can be used to prove — by induction on *n* $-$ that

$$
E[xd_n] \leq \frac{1}{4} {n+3 \choose 3} \leq n^3
$$

for every integer n such that $n > 2$.

Bounding Expected Depth

Consider the function $f(x) = 2^x$.

Bounding Expected Depth

This function is **convex**: If $\alpha \ge 0$, $\beta \ge 0$, and $\alpha + \beta = 1$ then

 $f(\alpha x_1 + \beta x_2) \leq \alpha f(x_1) + \beta f(x_2)$

for real numbers x_1 and x_2 such that $x_2 > x_1 > 0$. This can be used to prove the following.

Theorem (Jensen's Inequality): If *f* is a convex function then, for every integer $m > 1$ and for all positive values *x*1, *x*2, . . . , *xm*,

$$
f\left(\frac{1}{m}(x_1 + x_2 + \cdots + x_m)\right) \\ \leq \frac{1}{m}(f(x_1) + f(x_2) + \cdots + f(x_m)).
$$

Bounding Expected Depth

Applying this, with $m = |\Omega_n|$,

$$
\Omega_n = \{\sigma_1, \sigma_2, \ldots, \sigma_m\}
$$

(for some ordering of this set) and $x_i = d_n(\sigma_i)$ for $1 \le i \le m$, we obtain the inequality

$$
2^{\mathsf{E}[d_n]} \leq \mathsf{E}[xd_n] \leq n^3
$$

which implies that

$$
E[d_n] \leq 3 \log_2 n.
$$

This — if a binary search tree with size *n* by starting with an empty tree and inserting keys, using a "uniformly and randomly chosen" insertion order, then the expected value of the depth of the resulting tree is at most 3 log₂ *n*.

Tail Bounds

Suppose, now, that *k* is a positive integer and consider a binary search tree, with size *n*, that is "randomly" generated as described above.

- The depth of this tree is greater than or equal to 3 $\log_2 n + k$ if and only if the *exponential depth* of this tree is greater than or equal to $2^k \times n^3 \geq 2^k \times \mathsf{E}[xd_n].$
- *Markov's Inequality* can be applied to show that the probability of this is at most 2−*^k* .
- Thus the probability that a randomly constructed binary search has a depth, that is significantly larger than $3 \log_2 n$, is very small.

Remember That Assumption!

Please note that, like every other "average case analysis", *this analysis depends on an assumption that might not be satisfied*.

- In this case the assumption concerns how binary search trees with size *n* are generated (which is used to obtain an assumption about the shapes of these trees).
- If the assumption is not satisfied then, while the analysis is still technically "correct", it might also be completely *irrelevant* — and the depts of binary search trees seen, under whatever circumstances you are considering, might be very different than what this analysis suggests.