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Learning Goals

Learning Goals:

e |Learn about another application of probability theory to the
analysis of data structures and algorithms.
¢ Applying this is somewhat tricky, in this case, because the
identification of a sample space, that allows the analysis
to be carried out, is somewhat challenging.
Note: It is possible that students will also see a version of this
material in CPSC 331.



Distributions

Randomly Constructed Binary Search Trees

® Let nbe a positive integer.

e Consider the binary search trees, with size n, storing the
integers 1,2,...,n.

e Since these integers can be inserted into an initially empty
binary search tree in any order, this experiment can be
modelled using a sample space, 2, which includes all
permutations

(Oé1,0(2,.-. 704n)

of the set of integers between 1 and n— listing the order in
which these integers are inserted.

e |t follows that |2,| = n!



Distributions

One Probability Distribution...

e |tis assumed that all permutations are equally — so that
the uniform probability distribution

P1 . Qn % R
is used. Then ] ]
P1 (O') = m = m

for every outcome o € Q.
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.... and Another Probability Distribution...

Consider another probability distribution
P2 : Qn — R
such that, for each element o € Q, P2(0) is the probability that

o is returned by an execution of the following.

1. Choose an integer i such that 1 </ < n— choosing each
with probability 1.
2. Choose a permutation

,U‘: (/817/627---7/8n—1)

uniformly from Q,_1 — so that each permutation, ., is

chosen with probability \QLI = (n_11)!.
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.... and Another Probability Distribution...
3. For1 <j<n,let

Ly misg<ion,
T7\B+1 fi<p<n-1,

so that (y1,72, . ..,7vn—1) includes the numbers

1,2,...,0i+1,i+2,...,n
={jeN[1<j<nandj#i}

in some order (with each of the integers in this set).
4. Return the permutation

(i771"72,---,'7n—1)-
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.... and Another Probability Distribution...

e Every permutation o € Q, corresponds to exactly one
choice of the integer /, at line 1, and exactly one choice of
the permutation, i € Q,_1, atline 2,

e This can be used to show that
"
Pa(0) = P1(o) = —

for every permutation o € Q, — so that the probability
distributions, P4 and P», are the same.
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... and Yet Another Probability Distribution...

Consider yet another probability distribution
P3 . Qn — R

such that, for each element o € Q,, P3(0) is the probability that
o is returned by an execution of the following.

1. Choose an integer i such that 1 </ < n— choosing each
with probability 1.

2. Choose a subset S; of the set of integers 2,3, ..., nwith
size i — 1 — choosing every such subset with the same

probability, (’,7:11)_1 = %

3. Set Sk to be the set of integers between 2 and n — 1 that
do not belong to S; — so that Sg is a set, with size n — |,
suchthat S, N Sg=0and S ,USg=1{2,3,...,n}.



Distributions

4

... and Yet Another Probability Distribution...

. Choose a permutation

w=(B1,52,...,0i-1)

uniformly from Q;_; — so that each permutation, p, is

chosen with probability ﬁ = ﬁ

Note: ;. is a sequence with length zero if i = 1, so that
i—1=0.

. Choose a permutation

V= (717727"'77/7—/)

uniformly from Q,_; — so that each permutation, y, is

chosen with probability 15— = 1.

Note: 1. is a sequence with length zero if i = n, so that
n—i=0.
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... and Yet Another Probability Distribution...

Suppose, now, that
S.={ki,ko,....,ki_1} and Sg={l1,0o,....0n_ i}
where
Ki<hko<---<Kki_1 and b1 <lo<---<lph_j.

6. Return the permutation (ay, ap, ..., an) € Q, thatis
defined as follows:

® oy =1.

e [f2<j<nandje S —sothatj= kp, for aninteger h
suchthat 1 < h<i—1,then a; = By (for 5y as given at
line 4, above).

e [f2<j<nandje Sg—sothatj= /¢, foraninteger h
suchthat 1 < h < n—i,then o = n— i+~ (for vy, as given
at line 5, above).
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... and Yet Another Probability Distribution...

e Every permutation ¢ € ¥, corresponds to exactly one
choice of the integer i at line 1, exactly one choice of the
subset S; at line 2, exactly one choice of the permutation
1€ X4 atline 4, and exactly one choice of the
permutation p € ¥,,_; at line 5.

e This can be used to show that

P3(0‘) = PQ(O') = P1(O’) :%

for every permutation o € Q, — so that the probability
distribution Pz is the same as the probability
distributions P4 and P».



Random Variables

Random Variables of Interest

For each permutation o € Q,, let T, be the binary search
tree, storing 1,2, ..., n, obtained by storing integers into an
initially empty binary search tree — in the order given by o.
Let d: Q, — R such that, for o € Qp, d(o) is the depth of
the binary search tree T,.

Let xd : Q, — R such, that, for o € Q,, xd(o) = 29(9),

The value of these random variables are shown, for the
case that n = 3, on the following slides.
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Random Variables of Interest

o=(1,2,3):

d(c) =2 and xd(o) = 22 = 4.
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Random Variables of Interest

o=(1,3,2):

d(c) =2 and xd(o) = 22 = 4.
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Random Variables of Interest

o=(2,1,3):

d(oc) =1and xd(o) =2' = 2.
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Random Variables of Interest

o=(2,3,1):

d(oc) =1and xd(o) =2' = 2.



Distributions Random Variables Recurrence Bounding Expected Depth Tail Bounds

Random Variables of Interest

o =(3,1,2):

d(c) =2 and xd(o) = 22 = 4.
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Random Variables of Interest

o=(3,2,1):

d(c) =2 and xd(o) = 22 = 4.



Random Variables

Random Variables of Interest

It follows, by the above, that if n = 3 then

E[d] = ) d(0) x P(0)

oEY3
=d((1,2,3)) x P((1,2,3)) + d((1,3,2)) x P((1,3,2))
+d((2,1,3)) x P((2,1,3)) + d((2,3,1)) x P((2,3,1)
+d((3,1,2)) x P((3,1,2)) + d((3,2,1)) x P((3,2,1)

— 1 1 1 1 1 1
=2xg+t2Xxgt+Ixg+Ixg+2xg+2x5

)
)



Random Variables

Random Variables of Interest

It also follows, by the above, that if n = 3 then

Elxd] = ) xd(o) x P(0)

oEY3

= xd((1,2,3)) x P((1,2,3)) + xd((1,3,2)) x P((1,3,2))
+xd((2,1,3)) x P((2,1,3)) + xd((2,3,1)) x P((2,3,1))
+xd((3,1,2)) x P((38,1,2)) + xd((3,2,1)) x P((3,2,1))

_ 1 1 1 1 1 1
—4X6+4X6+2X6+2X6+4X6+4X6

=20 _ 10
-6 3
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A Recurrence for a Bound

Now let i be an integer such that 1 </ < n. Let T, be a binary

search tree storing the integers 1,2,...,i — 1 and let Ty storing
the integers i+ 1,i+ 2,...,n— so that one of the binary
search trees that stores the integers 1,2,..., nis the binary

search tree T that has i/ at the root, with left subtree T; and
right subtree Tg:

AN

Let Tq be the binary search tree produced by subtracting / from
each of the integers stored at nodes — so that Ty stores the
integers 1,2,...,n— .
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A Recurrence for a Bound

Consider the following values.

e s: The number of permutations in ¥, that would produce T.
e s;: The number of permutations in ¥; that would
produce T;.
® sp: The number of permutations in ¥,,_; that would
produce ?R.
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A Recurrence for a Bound

e p: Probability that T is generated when using the
described experiment to produce a binary search tree
storing 1,2,...,n

e p,: Probability that T; is generated when using the
described experlment to produce a binary search tree
storing 1,2,.

® ppg: Probablllty that Tg is generated when using the
described experiment to produce a binary search tree
storing1,2,...,n—|.



Recurrence

A Recurrence for a Bound

Since the uniform probability distribution is being used in
this case,

s s
P=1a, ~ 0
S5 s
PL=Tal =i

and
SR SR

PR=10, " (n—n
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A Recurrence for a Bound

In order to compute s, note the following.

* There is one way to choose the first element in an outcome
(from Q) — this must always be i, so that i is at the root of
the binary search tree that is generated.

* There are exactly (7_]) ways to choose the other locations
(for the ordering of 1,2, ..., n being generated) of integers
between 1 and /.

e For each of these, there are (by definition) s; ways to
choose the values placed in these locations, in order for
the left subtree generated to be T;.

e For each of these, there are sg ways to choose the values
placed in the remaining locations, in order for the right
subtree to be Tg.
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A Recurrence for a Bound

It follows that s = (7—]') x s, x sp, so that

po S
|€2n|
B (7__11) X 8§ X Sp
- n!
T X SLX SR
B nx(n—1)!

_1 S| SR
TR U— (o)
1 S| SR

= — X X
no1Qi4l Q20
1

=5 X PL X PR-



Recurrence

A Recurrence for a Bound

Now, for i > 1, let xd; : Q; — R be the random variable, defined
for the sample space Q;, whose value is the exponential depth
of the binary search tree (storing the integers 1,2,... /)
generated using whatever outcome, from ;, that is being
considered.

e [t follows by the analysis given above (in which binary
search trees storing the integers 1, 2 and 3 were

considered) that xd; = 2.

e Let us “define” xdy to be 0. This will not really change
anything, but it will make it easier to produce general
formulas for some of what we want to consider.
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A Recurrence for a Bound

Suppose n is a positive integer. Consider another sequence of
random variables xd), 1, xdn 2, . . ., Xdp » such that, for every
integer i such that 1 </ < nand for every outcome

g = (j1 7j27 e 7jn) S Qn;

xdp(o) ifj1 =1,

0 if j1 # .

Then, for n > 2, xd,, j(0) = xdp(c) > 0if and only if i is stored at

the root of the binary search tree constructed using insertion
order 0 — and

an,i(a) = {

an - an,‘] + an72 +---+ an7n.



Recurrence

A Recurrence for a Bound

Consider, again, a binary search tree T with the form

VAN

Once again, let 7’R be the binary search tree produced by
subtracting / from each of the integers stored at nodes — so
that Tg stores the integers 1,2,..., n—i.
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A Recurrence for a Bound

If the binary search trees T, T, and ?R have depths d, d;
and dg respectively, then

d= max(dL, d,q) + 1.

Thus if the exponential depths of these trees are xd = 29,
xd; = 2% and xdr = 2%, respectively, then

xd =29
_ omax(d;.dp)+1
_ 5 5 pmax(dy.dr)
= 2 x max(29, 29)
= 2 x max(xdL, xdg)
< 2 x (xd + xdR).
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A Recurrence for a Bound

Recall, as well, that if p, p; and pg are the probabilities that T,
T, and Tg are obtained (when randomly producing binary
search trees with sizes n, i — 1 and n — i, respectively) then

1
p= n X PL X PR.
These equations can be applied to establish that
2
E[xdyi] = o X (E[xdi_1] + E[xdnh_i])-

Exercise: Establish this bound.
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A Recurrence for a Bound

Now, since xd, = xdp 1 + Xdp 2 + - - - + Xdp p, it follows that
n
E[xd, =E [Z xdn,,-]
i=1
n
= Z E[xd},] (by Linearity of Expectation)
< Z (2« (Elxol-1] + Elr -
4"
= Z E[xd}].
i=0
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A Recurrence for a Bound

The above inequality can be used to prove — by induction on n

— that 1 3
n+ 3
< - <
E[xdn]_4< 3 > <n

for every integer n such that n > 2.



Bounding Expected Depth

Bounding Expected Depth

Consider the function f(x) = 2.

25

20 -
15 -
10 -
5_

0 | | | |
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Bounding Expected Depth

This function is convex: If « > 0, 8 > 0, and « + 8 = 1 then
f(aX1 + ,BXQ) < af(X1) + ,Bf(Xg)

for real numbers x; and x» such that x> > x; > 0. This can be
used to prove the following.

Theorem (Jensen’s Inequality): If f is a convex func-
tion then, for every integer m > 1 and for all positive
values xq, Xo, ..., Xm,

f(L(x1+ X+ + Xm))

< T (00) + 1) + -+ 1),
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Bounding Expected Depth
Applying this, with m = [Q,|,

Qp={o1,02,...,0m}

(for some ordering of this set) and x; = dn(0;) for 1 <i < m, we
obtain the inequality

2Elon] < E[xd,,] < n®

which implies that
E[dn] < 3 |0g2 n.

This — if a binary search tree with size n by starting with an
empty tree and inserting keys, using a “uniformly and randomly
chosen” insertion order, then the expected value of the depth of
the resulting tree is at most 3 log, n.
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Tail Bounds

Suppose, now, that k is a positive integer and consider a binary
search tree, with size n, that is “randomly” generated as
described above.

¢ The depth of this tree is greater than or equal
to 3log, N+ k if and only if the exponential depth of this
tree is greater than or equal to 2K x n® > 2K x E[xd}].

e Markov's Inequality can be applied to show that the
probability of this is at most 2.

e Thus the probability that a randomly constructed binary
search has a depth, that is significantly larger than 3 log, n,
is very small.



Tail Bounds

Remember That Assumption!

Please note that, like every other “average case analysis”, this
analysis depends on an assumption that might not be satisfied.

¢ In this case the assumption concerns how binary search
trees with size n are generated (which is used to obtain an
assumption about the shapes of these trees).

e |f the assumption is not satisfied then, while the analysis is
still technically “correct”, it might also be completely
irrelevant — and the depts of binary search trees seen,
under whatever circumstances you are considering, might
be very different than what this analysis suggests.



	Distributions
	Random Variables
	Recurrence
	Bounding Expected Depth
	Tail Bounds

