Computer Science 351 Application: Randomly Constructed Binary Search Trees

Instructor: Wayne Eberly

Department of Computer Science University of Calgary

Lecture #24

Learning Goals

Learning Goals:

- Learn about another application of probability theory to the analysis of data structures and algorithms.
- Applying this is somewhat tricky, in this case, because the identification of a *sample space*, that allows the analysis to be carried out, is somewhat challenging.

Note: It is possible that students will also see a version of this material in CPSC 331.

Randomly Constructed Binary Search Trees

- Let *n* be a positive integer.
- Consider the binary search trees, with size *n*, storing the integers 1, 2, ..., *n*.
- Since these integers can be inserted into an initially empty binary search tree in any order, this experiment can be modelled using a *sample space*, Ω_n, which includes all *permutations*

 $(\alpha_1, \alpha_2, \ldots, \alpha_n)$

of the set of integers between 1 and n — listing the order in which these integers are inserted.

• It follows that $|\Omega_n| = n!$

One Probability Distribution...

 It is *assumed* that all permutations are equally — so that the *uniform probability distribution*

$$\mathsf{P}_1:\Omega_n\to\mathbb{R}$$

is used. Then

$$\mathsf{P}_1(\sigma) = \frac{1}{|\Omega_n|} = \frac{1}{n!}$$

for every outcome $\sigma \in \Omega_n$.

... and Another Probability Distribution...

Consider another probability distribution

$$\mathsf{P}_2:\Omega_n\to\mathbb{R}$$

such that, for each element $\sigma \in \Omega_n$, $P_2(\sigma)$ is the probability that σ is returned by an execution of the following.

- Choose an integer *i* such that 1 ≤ *i* ≤ *n* choosing each with probability ¹/_n.
- 2. Choose a permutation

$$\mu = (\beta_1, \beta_2, \ldots, \beta_{n-1})$$

uniformly from Ω_{n-1} — so that each permutation, μ , is chosen with probability $\frac{1}{|\Omega_{n-1}|} = \frac{1}{(n-1)!}$.

... and Another Probability Distribution...

3. For $1 \le j \le n$, let

$$\gamma_j = \begin{cases} \beta_j & \text{if } 1 \le \beta_j \le i - 1, \\ \beta_j + 1 & \text{if } i \le \beta_j \le n - 1, \end{cases}$$

so that $(\gamma_1, \gamma_2, \dots, \gamma_{n-1})$ includes the numbers

$$1, 2, \dots, i, i + 1, i + 2, \dots, n$$
$$= \{j \in \mathbb{N} \mid 1 \le j \le n \text{ and } j \ne i\}$$

in some order (with each of the integers in this set).

4. Return the permutation

$$(i, \gamma_1, \gamma_2, \ldots, \gamma_{n-1}).$$

... and Another Probability Distribution...

- Every permutation σ ∈ Ω_n corresponds to exactly *one* choice of the integer *i*, at line 1, and exactly *one* choice of the permutation, μ ∈ Ω_{n-1}, at line 2,
- This can be used to show that

$$\mathsf{P}_2(\sigma) = \mathsf{P}_1(\sigma) = \frac{1}{n!}$$

for every permutation $\sigma \in \Omega_n$ — so that the probability distributions, P₁ and P₂, are the same.

... and Yet Another Probability Distribution...

Consider yet another probability distribution

 $\mathsf{P}_3:\Omega_n\to\mathbb{R}$

such that, for each element $\sigma \in \Omega_n$, $P_3(\sigma)$ is the probability that σ is returned by an execution of the following.

- 1. Choose an integer *i* such that $1 \le i \le n$ choosing each with probability $\frac{1}{n}$.
- 2. Choose a subset S_L of the set of integers 2, 3, ..., *n* with size i 1 choosing every such subset with the same probability, $\binom{n-1}{i-1}^{-1} = \frac{(i-1)! \times (n-i)!}{(n-1)!}$.
- 3. Set S_R to be the set of integers between 2 and n 1 that do not belong to S_L so that S_R is a set, with size n i, such that $S_L \cap S_R = \emptyset$ and $S_L \cup S_R = \{2, 3, ..., n\}$.

... and Yet Another Probability Distribution...

4. Choose a permutation

$$\mu = (\beta_1, \beta_2, \ldots, \beta_{i-1})$$

uniformly from Ω_{i-1} — so that each permutation, μ , is chosen with probability $\frac{1}{|\Omega_{i-1}|} = \frac{1}{(i-1)!}$.

Note: μ is a sequence with length zero if i = 1, so that i - 1 = 0.

5. Choose a permutation

$$\nu = (\gamma_1, \gamma_2, \ldots, \gamma_{n-i})$$

uniformly from Ω_{n-i} — so that each permutation, μ , is chosen with probability $\frac{1}{|\Omega_{n-i}|} = \frac{1}{(n-i)!}$. *Note:* μ is a sequence with length zero if i = n, so that n - i = 0.

... and Yet Another Probability Distribution...

Suppose, now, that

$$S_L = \{k_1, k_2, \dots, k_{i-1}\}$$
 and $S_R = \{\ell_1, \ell_2, \dots, \ell_{n-i}\}$

where

$$k_1 < k_2 < \cdots < k_{i-1}$$
 and $\ell_1 < \ell_2 < \cdots < \ell_{n-i}$.

- Return the permutation (α₁, α₂,..., α_n) ∈ Ω_n that is defined as follows:
 - $\alpha_1 = i$.
 - If 2 ≤ j ≤ n and j ∈ S_L so that j = k_h, for an integer h such that 1 ≤ h ≤ i − 1, then α_j = β_h (for β_h as given at line 4, above).
 - If 2 ≤ j ≤ n and j ∈ S_R so that j = ℓ_h, for an integer h such that 1 ≤ h ≤ n − i, then α_j = n − i + γ_h (for γ_h as given at line 5, above).

Distributions

... and Yet Another Probability Distribution...

- Every permutation σ ∈ Σ_n corresponds to exactly one choice of the integer *i* at line 1, exactly one choice of the subset S_L at line 2, exactly one choice of the permutation μ ∈ Σ_{i-1} at line 4, and exactly one choice of the permutation μ ∈ Σ_{n-i} at line 5.
- This can be used to show that

$$\mathsf{P}_3(\sigma) = \mathsf{P}_2(\sigma) = \mathsf{P}_1(\sigma) = \frac{1}{n!}$$

for every permutation $\sigma \in \Omega_n$ — so that the probability distribution P₃ is the same as the probability distributions P₁ and P₂.

- For each permutation *σ* ∈ Ω_n, let *T_σ* be the binary search tree, storing 1, 2, ..., *n*, obtained by storing integers into an initially empty binary search tree in the order given by *σ*.
- Let *d* : Ω_n → ℝ such that, for *σ* ∈ Ω_n, *d*(*σ*) is the *depth* of the binary search tree *T_σ*.
- Let $xd : \Omega_n \to \mathbb{R}$ such, that, for $\sigma \in \Omega_n$, $xd(\sigma) = 2^{d(\sigma)}$.
- The value of these random variables are shown, for the case that *n* = 3, on the following slides.

$$d(\sigma) = 2$$
 and $xd(\sigma) = 2^2 = 4$.

$$d(\sigma) = 2$$
 and $xd(\sigma) = 2^2 = 4$.

Random Variables of Interest

 $d(\sigma) = 1$ and $xd(\sigma) = 2^1 = 2$.

Random Variables of Interest

 $d(\sigma) = 1$ and $xd(\sigma) = 2^1 = 2$.

$$d(\sigma) = 2$$
 and $xd(\sigma) = 2^2 = 4$.

Random Variables of Interest

 $d(\sigma) = 2$ and $xd(\sigma) = 2^2 = 4$.

Random Variables of Interest

It follows, by the above, that if n = 3 then

$$\begin{split} \mathsf{E}[d] &= \sum_{\sigma \in \Sigma_3} d(\sigma) \times \mathsf{P}(\sigma) \\ &= d((1,2,3)) \times \mathsf{P}((1,2,3)) + d((1,3,2)) \times \mathsf{P}((1,3,2)) \\ &+ d((2,1,3)) \times \mathsf{P}((2,1,3)) + d((2,3,1)) \times \mathsf{P}((2,3,1)) \\ &+ d((3,1,2)) \times \mathsf{P}((3,1,2)) + d((3,2,1)) \times \mathsf{P}((3,2,1)) \\ &= 2 \times \frac{1}{6} + 2 \times \frac{1}{6} + 1 \times \frac{1}{6} + 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 2 \times \frac{1}{6} \\ &= \frac{10}{6} = \frac{5}{3}. \end{split}$$

Random Variables of Interest

It also follows, by the above, that if n = 3 then

$$\begin{split} \mathsf{E}[xd] &= \sum_{\sigma \in \Sigma_3} xd(\sigma) \times \mathsf{P}(\sigma) \\ &= xd((1,2,3)) \times \mathsf{P}((1,2,3)) + xd((1,3,2)) \times \mathsf{P}((1,3,2)) \\ &+ xd((2,1,3)) \times \mathsf{P}((2,1,3)) + xd((2,3,1)) \times \mathsf{P}((2,3,1)) \\ &+ xd((3,1,2)) \times \mathsf{P}((3,1,2)) + xd((3,2,1)) \times \mathsf{P}((3,2,1)) \\ &= 4 \times \frac{1}{6} + 4 \times \frac{1}{6} + 2 \times \frac{1}{6} + 2 \times \frac{1}{6} + 4 \times \frac{1}{6} + 4 \times \frac{1}{6} \\ &= \frac{20}{6} = \frac{10}{3}. \end{split}$$

Now let *i* be an integer such that $1 \le i \le n$. Let T_L be a binary search tree storing the integers 1, 2, ..., i - 1 and let T_R storing the integers i + 1, i + 2, ..., n — so that one of the binary search trees that stores the integers 1, 2, ..., n is the binary search tree *T* that has *i* at the root, with left subtree T_L and right subtree T_R :

Let \hat{T}_R be the binary search tree produced by subtracting *i* from each of the integers stored at nodes — so that \hat{T}_R stores the integers 1, 2, ..., n - i.

Consider the following values.

- s: The number of permutations in Σ_n that would produce T.
- s_L : The number of permutations in Σ_i that would produce T_L .
- *s_R*: The number of permutations in Σ_{n-i} that would produce T
 _R.

- *p*: Probability that *T* is generated when using the described experiment to produce a binary search tree storing 1, 2, ..., *n*.
- *p*_L: Probability that *T*_L is generated when using the described experiment to produce a binary search tree storing 1, 2, ..., *i*.
- *p_R*: Probability that *T_R* is generated when using the described experiment to produce a binary search tree storing 1, 2, ..., *n i*.

Since the *uniform probability distribution* is being used in this case,

$$p = \frac{s}{|\Omega_n|} = \frac{s}{n!},$$
$$p_L = \frac{S_L}{|\Omega_i|} = \frac{s_L}{i!},$$

and

$$p_R = rac{s_R}{|\Omega_{n-i}|} = rac{s_R}{(n-i)!}.$$

In order to compute *s*, note the following.

- There is *one* way to choose the first element in an outcome (from Ω_n) — this must always be *i*, so that *i* is at the root of the binary search tree that is generated.
- There are exactly ⁿ⁻¹_{i-1} ways to choose the other locations (for the ordering of 1, 2, ..., *n* being generated) of integers between 1 and *i*.
- For each of these, there are (by definition) s_L ways to choose the values placed in these locations, in order for the left subtree generated to be T_L.
- For each of these, there are *s_R* ways to choose the values placed in the remaining locations, in order for the right subtree to be *T_R*.

A Recurrence for a Bound

It follows that $s = \binom{n-1}{i-1} \times s_L \times s_R$, so that

$$p = \frac{s}{|\Omega_n|}$$

$$= \frac{\binom{n-1}{i-1} \times s_L \times s_R}{n!}$$

$$= \frac{\frac{(n-1)!}{(i-1)! \times (n-i)!} \times s_L \times s_R}{n \times (n-1)!}$$

$$= \frac{1}{n} \times \frac{s_L}{(i-1)!} \times \frac{s_R}{(n-i)!}$$

$$= \frac{1}{n} \times \frac{s_L}{|\Omega_{i-1}|} \times \frac{s_R}{|\Omega_{n-i}|}$$

$$= \frac{1}{n} \times p_L \times p_R.$$

Now, for $i \ge 1$, let $xd_i : \Omega_i \to \mathbb{R}$ be the random variable, defined for the sample space Ω_i , whose value is the exponential depth of the binary search tree (storing the integers 1, 2, ..., i) generated using whatever outcome, from Ω_i , that is being considered.

- It follows by the analysis given above (in which binary search trees storing the integers 1, 2 and 3 were considered) that $xd_3 = \frac{10}{3}$.
- Let us "define" *xd*₀ to be 0. This will not really change anything, but it will make it easier to produce general formulas for some of what we want to consider.

Suppose *n* is a positive integer. Consider another sequence of random variables $xd_{n,1}, xd_{n,2}, \ldots, xd_{n,n}$ such that, for every integer *i* such that $1 \le i \le n$ and for every outcome

$$\sigma = (j_1, j_2, \dots, j_n) \in \Omega_n,$$
$$(xd_n(\sigma) \quad \text{if } j_1 = i$$

$$xd_{n,i}(\sigma) = \begin{cases} 100n(\sigma) & 0 \\ 0 & \text{if } j_1 \neq i. \end{cases}$$

Then, for $n \ge 2$, $xd_{n,i}(\sigma) = xd_n(\sigma) > 0$ if and only if *i* is stored at the root of the binary search tree constructed using insertion order σ — and

$$xd_n = xd_{n,1} + xd_{n,2} + \cdots + xd_{n,n}$$

Consider, again, a binary search tree T with the form

Once again, let \hat{T}_R be the binary search tree produced by subtracting *i* from each of the integers stored at nodes — so that \hat{T}_R stores the integers 1, 2, ..., n - i.

If the binary search trees T, T_L and \hat{T}_R have depths d, d_L and d_R respectively, then

$$d = \max(d_L, d_R) + 1.$$

Thus if the *exponential depths* of these trees are $xd = 2^d$, $xd_L = 2^{d_L}$ and $xd_R = 2^{d_R}$, respectively, then

$$\begin{aligned} xd &= 2^d \\ &= 2^{\max(d_L,d_R)+1} \\ &= 2 \times 2^{\max(d_L,d_R)} \\ &= 2 \times \max(2^{d_L},2^{d_R}) \\ &= 2 \times \max(xd_L,xd_R) \\ &\leq 2 \times (xd_L+xd_R). \end{aligned}$$

Recall, as well, that if p, p_L and p_R are the probabilities that T, T_L and \hat{T}_R are obtained (when randomly producing binary search trees with sizes n, i - 1 and n - i, respectively) then

$$p=\frac{1}{n}\times p_L\times p_R.$$

These equations can be applied to establish that

$$\mathsf{E}[xd_{n,i}] = \frac{2}{n} \times (\mathsf{E}[xd_{i-1}] + \mathsf{E}[xd_{n-i}]).$$

Exercise: Establish this bound.

Now, since $xd_n = xd_{n,1} + xd_{n,2} + \cdots + xd_{n,n}$, it follows that

$$E[xd_n] = E\left[\sum_{i=1}^n xd_{n,i}\right]$$

= $\sum_{i=1}^n E[xd_{n,i}]$ (by Linearity of Expectation)
 $\leq \sum_{i=1}^n \left(\frac{2}{n} \times (E[xd_{i-1}] + E[xd_{n-i}])\right)$
= $\frac{4}{n} \sum_{i=0}^{n-1} E[xd_i].$

The above inequality can be used to prove — by induction on n — that

$$\mathsf{E}[xd_n] \leq \frac{1}{4}\binom{n+3}{3} \leq n^3$$

for every integer *n* such that $n \ge 2$.

Bounding Expected Depth

Consider the function $f(x) = 2^x$.

Bounding Expected Depth

This function is **convex**: If $\alpha \ge 0$, $\beta \ge 0$, and $\alpha + \beta = 1$ then

$$f(\alpha x_1 + \beta x_2) \le \alpha f(x_1) + \beta f(x_2)$$

for real numbers x_1 and x_2 such that $x_2 > x_1 \ge 0$. This can be used to prove the following.

Theorem (Jensen's Inequality): If *f* is a convex function then, for every integer $m \ge 1$ and for all positive values x_1, x_2, \ldots, x_m ,

$$f\left(\frac{1}{m}(x_1+x_2+\cdots+x_m)\right)$$

$$\leq \frac{1}{m}(f(x_1)+f(x_2)+\cdots+f(x_m))$$

Bounding Expected Depth

Applying this, with $m = |\Omega_n|$,

$$\Omega_n = \{\sigma_1, \sigma_2, \ldots, \sigma_m\}$$

(for some ordering of this set) and $x_i = d_n(\sigma_i)$ for $1 \le i \le m$, we obtain the inequality

$$2^{\mathsf{E}[d_n]} \le \mathsf{E}[xd_n] \le n^3$$

which implies that

$$\mathsf{E}[d_n] \leq 3 \log_2 n.$$

This — if a binary search tree with size n by starting with an empty tree and inserting keys, using a "uniformly and randomly chosen" insertion order, then the expected value of the depth of the resulting tree is at most $3 \log_2 n$.

Suppose, now, that k is a positive integer and consider a binary search tree, with size n, that is "randomly" generated as described above.

- The depth of this tree is greater than or equal to 3 log₂ n + k if and only if the *exponential depth* of this tree is greater than or equal to 2^k × n³ ≥ 2^k × E[xd_n].
- *Markov's Inequality* can be applied to show that the probability of this is at most 2^{-k}.
- Thus the probability that a randomly constructed binary search has a depth, that is significantly larger than $3 \log_2 n$, is very small.

Remember That Assumption!

Please note that, like every other "average case analysis", this analysis depends on an assumption that might not be satisfied.

- In this case the assumption concerns how binary search trees with size *n* are generated (which is used to obtain an assumption about the shapes of these trees).
- If the assumption is not satisfied then, while the analysis is still technically "correct", it might also be completely *irrelevant* — and the depts of binary search trees seen, under whatever circumstances you are considering, might be very different than what this analysis suggests.