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Learning Goals

Learning Goals:

• Learn about another application of probability theory to the

analysis of data structures and algorithms.

• Applying this is somewhat tricky, in this case, because the

identification of a sample space, that allows the analysis

to be carried out, is somewhat challenging.

Note: It is possible that students will also see a version of this

material in CPSC 331.
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Randomly Constructed Binary Search Trees

• Let n be a positive integer.

• Consider the binary search trees, with size n, storing the

integers 1,2, . . . ,n.

• Since these integers can be inserted into an initially empty

binary search tree in any order, this experiment can be

modelled using a sample space, Ωn, which includes all

permutations

(α1, α2, . . . , αn)

of the set of integers between 1 and n — listing the order in

which these integers are inserted.

• It follows that |Ωn| = n!
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One Probability Distribution...

• It is assumed that all permutations are equally — so that

the uniform probability distribution

P1 : Ωn → R

is used. Then

P1(σ) =
1

|Ωn|
=

1

n!

for every outcome σ ∈ Ωn.



Distributions Random Variables Recurrence Bounding Expected Depth Tail Bounds

... and Another Probability Distribution...

Consider another probability distribution

P2 : Ωn → R

such that, for each element σ ∈ Ωn, P2(σ) is the probability that

σ is returned by an execution of the following.

1. Choose an integer i such that 1 ≤ i ≤ n — choosing each

with probability 1
n
.

2. Choose a permutation

µ = (β1, β2, . . . , βn−1)

uniformly from Ωn−1 — so that each permutation, µ, is

chosen with probability 1
|Ωn−1|

= 1
(n−1)! .
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... and Another Probability Distribution...

3. For 1 ≤ j ≤ n, let

γj =

{
βj if 1 ≤ βj ≤ i − 1,

βj + 1 if i ≤ βj ≤ n − 1,

so that (γ1, γ2, . . . , γn−1) includes the numbers

1,2, . . . , i , i + 1, i + 2, . . . ,n

= {j ∈ N | 1 ≤ j ≤ n and j 6= i}

in some order (with each of the integers in this set).

4. Return the permutation

(i , γ1, γ2, . . . , γn−1).
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... and Another Probability Distribution...

• Every permutation σ ∈ Ωn corresponds to exactly one

choice of the integer i , at line 1, and exactly one choice of

the permutation, µ ∈ Ωn−1, at line 2,

• This can be used to show that

P2(σ) = P1(σ) =
1

n!

for every permutation σ ∈ Ωn — so that the probability

distributions, P1 and P2, are the same.
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... and Yet Another Probability Distribution...

Consider yet another probability distribution

P3 : Ωn → R

such that, for each element σ ∈ Ωn, P3(σ) is the probability that

σ is returned by an execution of the following.

1. Choose an integer i such that 1 ≤ i ≤ n — choosing each

with probability 1
n .

2. Choose a subset SL of the set of integers 2,3, . . . ,n with

size i − 1 — choosing every such subset with the same

probability,
(

n−1
i−1

)−1
= (i−1)!×(n−i)!

(n−1)! .

3. Set SR to be the set of integers between 2 and n − 1 that

do not belong to SL — so that SR is a set, with size n − i ,

such that SL ∩ SR = ∅ and SL ∪ SR = {2,3, . . . ,n}.
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... and Yet Another Probability Distribution...

4. Choose a permutation

µ = (β1, β2, . . . , βi−1)

uniformly from Ωi−1 — so that each permutation, µ, is

chosen with probability 1
|Ωi−1|

= 1
(i−1)! .

Note: µ is a sequence with length zero if i = 1, so that

i − 1 = 0.

5. Choose a permutation

ν = (γ1, γ2, . . . , γn−i)

uniformly from Ωn−i — so that each permutation, µ, is

chosen with probability 1
|Ωn−i |

= 1
(n−i)! .

Note: µ is a sequence with length zero if i = n, so that

n − i = 0.
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... and Yet Another Probability Distribution...

Suppose, now, that

SL = {k1, k2, . . . , ki−1} and SR = {ℓ1, ℓ2, . . . , ℓn−i}

where

k1 < k2 < · · · < ki−1 and ℓ1 < ℓ2 < · · · < ℓn−i .

6. Return the permutation (α1, α2, . . . , αn) ∈ Ωn that is
defined as follows:

• α1 = i.

• If 2 ≤ j ≤ n and j ∈ SL — so that j = kh, for an integer h
such that 1 ≤ h ≤ i − 1, then αj = βh (for βh as given at

line 4, above).

• If 2 ≤ j ≤ n and j ∈ SR — so that j = ℓh, for an integer h

such that 1 ≤ h ≤ n − i, then αj = n − i + γh (for γh as given

at line 5, above).
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... and Yet Another Probability Distribution...

• Every permutation σ ∈ Σn corresponds to exactly one

choice of the integer i at line 1, exactly one choice of the

subset SL at line 2, exactly one choice of the permutation

µ ∈ Σi−1 at line 4, and exactly one choice of the

permutation µ ∈ Σn−i at line 5.

• This can be used to show that

P3(σ) = P2(σ) = P1(σ) =
1

n!

for every permutation σ ∈ Ωn — so that the probability

distribution P3 is the same as the probability

distributions P1 and P2.
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Random Variables of Interest

• For each permutation σ ∈ Ωn, let Tσ be the binary search

tree, storing 1,2, . . . ,n, obtained by storing integers into an

initially empty binary search tree — in the order given by σ.

• Let d : Ωn → R such that, for σ ∈ Ωn, d(σ) is the depth of

the binary search tree Tσ.

• Let xd : Ωn → R such, that, for σ ∈ Ωn, xd(σ) = 2d(σ).

• The value of these random variables are shown, for the

case that n = 3, on the following slides.
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Random Variables of Interest

σ = (1,2,3):
1

2

3

d(σ) = 2 and xd(σ) = 22 = 4.
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Random Variables of Interest

σ = (1,3,2):
1

2

3

d(σ) = 2 and xd(σ) = 22 = 4.
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Random Variables of Interest

σ = (2,1,3):

1

2

3

d(σ) = 1 and xd(σ) = 21 = 2.
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Random Variables of Interest

σ = (2,3,1):

1

2

3

d(σ) = 1 and xd(σ) = 21 = 2.
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Random Variables of Interest

σ = (3,1,2):

1

2

3

d(σ) = 2 and xd(σ) = 22 = 4.
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Random Variables of Interest

σ = (3,2,1):

1

2

3

d(σ) = 2 and xd(σ) = 22 = 4.
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Random Variables of Interest

It follows, by the above, that if n = 3 then

E[d ] =
∑

σ∈Σ3

d(σ)× P(σ)

= d((1,2,3))× P((1,2,3)) + d((1,3,2))× P((1,3,2))

+ d((2,1,3))× P((2,1,3)) + d((2,3,1))× P((2,3,1))

+ d((3,1,2))× P((3,1,2)) + d((3,2,1))× P((3,2,1))

= 2 × 1
6 + 2 × 1

6 + 1 × 1
6 + 1 × 1

6 + 2 × 1
6 + 2 × 1

6

= 10
6

= 5
3
.
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Random Variables of Interest

It also follows, by the above, that if n = 3 then

E[xd ] =
∑

σ∈Σ3

xd(σ)× P(σ)

= xd((1,2,3))× P((1,2,3)) + xd((1,3,2))× P((1,3,2))

+ xd((2,1,3))× P((2,1,3)) + xd((2,3,1))× P((2,3,1))

+ xd((3,1,2))× P((3,1,2)) + xd((3,2,1))× P((3,2,1))

= 4 × 1
6 + 4 × 1

6 + 2 × 1
6 + 2 × 1

6 + 4 × 1
6 + 4 × 1

6

= 20
6

= 10
3
.
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A Recurrence for a Bound

Now let i be an integer such that 1 ≤ i ≤ n. Let TL be a binary

search tree storing the integers 1,2, . . . , i − 1 and let TR storing

the integers i + 1, i + 2, . . . ,n — so that one of the binary

search trees that stores the integers 1,2, . . . ,n is the binary

search tree T that has i at the root, with left subtree TL and

right subtree TR:

T
L

T
R

i

Let T̂R be the binary search tree produced by subtracting i from

each of the integers stored at nodes — so that T̂R stores the

integers 1,2, . . . ,n − i .



Distributions Random Variables Recurrence Bounding Expected Depth Tail Bounds

A Recurrence for a Bound

Consider the following values.

• s: The number of permutations in Σn that would produce T .

• sL: The number of permutations in Σi that would

produce TL.

• sR : The number of permutations in Σn−i that would

produce T̂R.



Distributions Random Variables Recurrence Bounding Expected Depth Tail Bounds

A Recurrence for a Bound

• p: Probability that T is generated when using the

described experiment to produce a binary search tree

storing 1,2, . . . ,n.

• pL: Probability that TL is generated when using the

described experiment to produce a binary search tree

storing 1,2, . . . , i .

• pR: Probability that TR is generated when using the

described experiment to produce a binary search tree

storing 1,2, . . . ,n − i .
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A Recurrence for a Bound

Since the uniform probability distribution is being used in

this case,

p =
s

|Ωn|
=

s

n!
,

pL =
SL

|Ωi |
=

sL

i!
,

and

pR =
sR

|Ωn−i |
=

sR

(n − i)!
.
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A Recurrence for a Bound

In order to compute s, note the following.

• There is one way to choose the first element in an outcome

(from Ωn) — this must always be i , so that i is at the root of

the binary search tree that is generated.

• There are exactly
(

n−1
i−1

)
ways to choose the other locations

(for the ordering of 1,2, . . . ,n being generated) of integers

between 1 and i .

• For each of these, there are (by definition) sL ways to

choose the values placed in these locations, in order for

the left subtree generated to be TL.

• For each of these, there are sR ways to choose the values

placed in the remaining locations, in order for the right

subtree to be TR.
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A Recurrence for a Bound

It follows that s =
(

n−1
i−1

)
× sL × sR , so that

p =
s

|Ωn|

=

(
n−1
i−1

)
× sL × sR

n!

=

(n−1)!
(i−1)!×(n−i)! × sL × sR

n × (n − 1)!

=
1

n
×

sL

(i − 1)!
×

sR

(n − i)!

=
1

n
×

sL

|Ωi−1|
×

sR

|Ωn−i |

=
1

n
× pL × pR.
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A Recurrence for a Bound

Now, for i ≥ 1, let xdi : Ωi → R be the random variable, defined

for the sample space Ωi , whose value is the exponential depth

of the binary search tree (storing the integers 1,2, . . . , i)

generated using whatever outcome, from Ωi , that is being

considered.

• It follows by the analysis given above (in which binary

search trees storing the integers 1, 2 and 3 were

considered) that xd3 = 10
3

.

• Let us “define” xd0 to be 0. This will not really change

anything, but it will make it easier to produce general

formulas for some of what we want to consider.
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A Recurrence for a Bound

Suppose n is a positive integer. Consider another sequence of

random variables xdn,1, xdn,2, . . . , xdn,n such that, for every

integer i such that 1 ≤ i ≤ n and for every outcome

σ = (j1, j2, . . . , jn) ∈ Ωn,

xdn,i(σ) =

{
xdn(σ) if j1 = i ,

0 if j1 6= i .

Then, for n ≥ 2, xdn,i(σ) = xdn(σ) > 0 if and only if i is stored at

the root of the binary search tree constructed using insertion

order σ — and

xdn = xdn,1 + xdn,2 + · · ·+ xdn,n.
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A Recurrence for a Bound

Consider, again, a binary search tree T with the form

T
L

T
R

i

Once again, let T̂R be the binary search tree produced by

subtracting i from each of the integers stored at nodes — so

that T̂R stores the integers 1,2, . . . ,n − i .
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A Recurrence for a Bound

If the binary search trees T , TL and T̂R have depths d , dL

and dR respectively, then

d = max(dL,dR) + 1.

Thus if the exponential depths of these trees are xd = 2d ,

xdL = 2dL and xdR = 2dR , respectively, then

xd = 2d

= 2max(dL,dR)+1

= 2 × 2max(dL,dR)

= 2 ×max(2dL ,2dR)

= 2 ×max(xdL, xdR)

≤ 2 × (xdL + xdR).
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A Recurrence for a Bound

Recall, as well, that if p, pL and pR are the probabilities that T ,

TL and T̂R are obtained (when randomly producing binary

search trees with sizes n, i − 1 and n − i , respectively) then

p =
1

n
× pL × pR.

These equations can be applied to establish that

E[xdn,i ] =
2

n
× (E[xdi−1] + E[xdn−i ]).

Exercise: Establish this bound.
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A Recurrence for a Bound

Now, since xdn = xdn,1 + xdn,2 + · · ·+ xdn,n, it follows that

E[xdn] = E

[
n∑

i=1

xdn,i

]

=

n∑

i=1

E[xdn,i ] (by Linearity of Expectation)

≤
n∑

i=1

(
2

n
× (E[xdi−1] + E[xdn−i ]

)

=
4

n

n−1∑

i=0

E[xdi ].
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A Recurrence for a Bound

The above inequality can be used to prove — by induction on n

— that

E[xdn] ≤
1

4

(
n + 3

3

)
≤ n3

for every integer n such that n ≥ 2.
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Bounding Expected Depth

Consider the function f (x) = 2x .

0

5

10

15

20

25

0 1 2 3 4 5

2**x
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Bounding Expected Depth

This function is convex: If α ≥ 0, β ≥ 0, and α+ β = 1 then

f (αx1 + βx2) ≤ αf (x1) + βf (x2)

for real numbers x1 and x2 such that x2 > x1 ≥ 0. This can be

used to prove the following.

Theorem (Jensen’s Inequality): If f is a convex func-

tion then, for every integer m ≥ 1 and for all positive

values x1, x2, . . . , xm,

f
(

1
m
(x1 + x2 + · · ·+ xm)

)

≤
1

m
(f (x1) + f (x2) + · · ·+ f (xm)) .
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Bounding Expected Depth

Applying this, with m = |Ωn|,

Ωn = {σ1, σ2, . . . , σm}

(for some ordering of this set) and xi = dn(σi) for 1 ≤ i ≤ m, we

obtain the inequality

2E[dn] ≤ E[xdn] ≤ n3

which implies that

E[dn] ≤ 3 log2 n.

This — if a binary search tree with size n by starting with an

empty tree and inserting keys, using a “uniformly and randomly

chosen” insertion order, then the expected value of the depth of

the resulting tree is at most 3 log2 n.
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Tail Bounds

Suppose, now, that k is a positive integer and consider a binary

search tree, with size n, that is “randomly” generated as

described above.

• The depth of this tree is greater than or equal

to 3 log2 n + k if and only if the exponential depth of this

tree is greater than or equal to 2k × n3 ≥ 2k × E[xdn].

• Markov’s Inequality can be applied to show that the

probability of this is at most 2−k .

• Thus the probability that a randomly constructed binary

search has a depth, that is significantly larger than 3 log2 n,

is very small.
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Remember That Assumption!

Please note that, like every other “average case analysis”, this

analysis depends on an assumption that might not be satisfied.

• In this case the assumption concerns how binary search

trees with size n are generated (which is used to obtain an

assumption about the shapes of these trees).

• If the assumption is not satisfied then, while the analysis is

still technically “correct”, it might also be completely

irrelevant — and the depts of binary search trees seen,

under whatever circumstances you are considering, might

be very different than what this analysis suggests.
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