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Learning Goals

• Learn about discrete probability theory can be applied to

carry out an average case analysis of a deterministic

algorithm, and to analyze various kinds of randomized

algorithms.

• Learn about various kinds of randomized algorithms for

decision problems that are allowed to fail in various ways.
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Example: Linear Search

Consider a linear search algorithm (given as pseudocode):

integer search (integer[] A, integer key) {

1. integer n := A.length

2. integer i := 0

3. while (i < n) {

4. if (A[i] == key) {

5. return i

}

6. i := i+ 1

}

7. throw a NoSuchElementException

}
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Example: Linear Search

• To simplify our analysis, suppose we count the number of

numbered steps that are carried out when this algorithm is

executed.

• If 0 ≤ i ≤ n − 1 and the first copy of key is in position i then

3i + 5 steps are executed.

• If there is no copy of key stored in the array, then 3n + 3

steps are executed.
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Worst-Case Analysis

• If an algorithm is deterministic — like the “linear search”

algorithm here — then the number of steps that is used, on

any given input, is a constant that only depends on that

input.

• We often want to measure, or bound, the number of steps

used as a function of the “size” of the input.

• For this problem, let us define the “size” of the input to be

the length, n, of the array A that is part of the input.

• The worst-case running time of an algorithm is the

maximum number of steps that is used by algorithm when

it is executed on an input with a given size.
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Worst-Case Analysis

• It follows from the above that — if “running time” and “size”

are defined as shown here — then the worst-case

running time of this linear search algorithm is the

maximum of

max
0≤i≤n−1

(3i + 5) and 3n + 3,

that is, 3n + 3.
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Average-Case Analysis

• Sometime, the “worst-case running time” seems too

pessimistic because you almost never have an execution

of the algorithm that uses the number of steps given as its

“worst-case running time” — and you are interested in (and

satisfied by) knowing how many steps are used, most of

the time, instead.

• An average-case analysis might be more helpful here.
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Average-Case Analysis

In order to perform an average-case analysis for a given input

size n, consider an experiment in which you are executing

your algorithm on an input with size n.

• The sample space Ω should generally include sets of

inputs with size n, corresponding to different kinds of

executions of the algorithm.

• For the “linear search” algorithm we might use a sample

space

Ω = {s0, s1, s2, . . . , sn−1u}

such that
• for 0 ≤ i ≤ n − 1, si includes all inputs A (with length n) and

key such that A[j] 6= key for 0 ≤ j ≤ i − 1, and A[i] = key.

• u includes all inputs A (with length n) and key such that

A[i] 6= key, for every integer i such that 0 ≤ i ≤ −1.
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Average-Case Analysis

For µ ∈ Ω let T (µ) be the number of steps used by an execution

of the “linear search” algorithm when it is executed on an input

from set µ.

• If 0 ≤ i ≤ n − 1 and µ = si then the loop is executed

i + 1 times (with the key found during the last of these

execution) — so that T (si) = 3i + 5.

• If µ = u then the loop is executed n times, without the key
being found, and there is one more step after that —

T (u) = 3n + 3.

Thus the number of steps used, or “running time”, has been

expressed as a random variable T : Ω → N.



Average-Case Analysis Randomized Algorithms Randomized Algorithms for Decision Problems What Really Happens?

Average-Case Analysis

In order to complete an average-case analysis we need to

know — or, more generally, make an assumption — about

how likely each outcome in Ω is.

• This is modelled by a probability distribution P : Ω → R.

• The “expected running time” (or results of this

“average-case analysis”) is the expected value E[T ] of the

random variable T with respect to the probability

distribution P.

• This can depend, quite heavily, on the distribution P being

used — and can be “technically correct” but also

misleading or irrelevant if the assumptions about

likelihoods are not correct.
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Average-Case Analysis

Example: Suppose that P : Ω → R is the uniform

distribution, so that

P(si ) = P(u) = 1
|Ω| =

1
n+1 .

Then

E[T ] =
∑

µ∈Ω

T (µ)× P(µ)

=

n−1
∑

i=0

T (si)× P(si ) + T (u)× P(u)

=

n−1
∑

i=0

(3i + 5)× 1
n+1 + (3n + 3)× 1

n+1
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Average-Case Analysis

=
3

n + 1
×

n−i
∑

i=0

i +
5

n + 1

n−1
∑

i=0

1 + 3

=
3

n + 1
×

n(n − 1)

2
+

5

n + 1
× n + 3

=
3n2 − 3n + 10n + 6n + 6

2(n + 1)

=
3n2 + 13n + 6

2(n + 1)

= 3
2
n + 5 − 2

n+1
.
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Average-Case Analysis

Example: Suppose, instead, that successful searches are

extremely likely and, furthermore, the key is almost always

near the beginning of the array. In particular, suppose that

P : Ω → R such that

P(si ) = 2−i−1 for 0 ≤ i ≤ n − 1

and P(u) = 2−n. Then

E[T ] =
∑

µ∈Ω

T (µ)× P(µ)

=

n−1
∑

i=0

T (si)× P(si ) + T (u)× P(u)
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Average-Case Analysis

=
n−1
∑

i=0

2−i−1(3i + 5) + 2−n(3n + 6)

= 3 ×
n−1
∑

i=0

i

2i+1
+ 5 ×

n−1
∑

i=0

1

2i+1
+ 3 ×

n

2n
+

6

2n

≤ 3 ×
∑

i≥0

i

2i+1
+ 5 ×

∑

i≥0

1

2i+1
+ 3 ×

n

2n
+

6

2n

≤ 3 × 2 + 5 × 1 + 3 × 1 + 3

= 17.

Conclusion: Assumptions made about the likelihood of

outcomes can significantly effect the results about expected

running times of algorithms that one can obtain.
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Average-Case Analysis

Where Might You See Average-Case Analysis?

• In CPSC 331 a deterministic version of a QuickSort
algorithm might be given, using assumptions about

whether entries in the input array distinct, and the relative

orderings of the entries in the input array.

• This course might include average-case analyses involving

hash tables and randomly constructed binary search

trees.
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Randomized Algorithms

Suppose, now, that a Boolean array A, with length n, is given

as input.

• We are trying to find some integer i such that A[i] = true
— but the algorithm is allowed to give up: It is acceptable

to report failure (by throwing an exception) even if true is

an entry somewhere in the array, but we do not find it.

• Consider the randomized algorithm — which can choose

an integer randomly from a given finite set (whose size

might depend on the algorithm’s input) that is shown on the

following slide.



Average-Case Analysis Randomized Algorithms Randomized Algorithms for Decision Problems What Really Happens?

Randomized Algorithms

integer rSearch (boolean[] A) {

1. integer n := A.length

2. integer i := 0

3. while (i < n) {

4. Choose j uniformly from the set {0,1,2, . . . ,n − 1}
— independently from any previous selections.

5. if (A[j]) {

6. return j

}

7. i := i+ 1

}

8. throw a NoSuchElementException

}
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Randomized Algorithms

• This is an example of a randomized algorithm: It uses a

random number generator during its execution so that

neither the output it returns, nor the number of steps it uses

to generate this output is fixed, even when the input is.

• If A[j] = false for every integer j such that

0 ≤ j ≤ n − 1 then — even though choices of the values

for j might be different for different executions of the

algorithm — the test at line 5 can never pass, so that there

will always be n executions of the body of the loop, and the

step at line 8 will always be reached and executed.

• This can be used to argue that there will always be exactly

4n + 3 executions of numbered steps, in this case.
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Randomized Algorithms

• Suppose A is an array such that A[j] = true for every

integer j such that 0 ≤ j ≤ n − 1, instead. This time, the

test at line 5 must pass during the first execution of the

loop.

• The output that is returned might be any integer j such

that 0 ≤ j ≤ n − 1 — and each is returned with probability
1
n
. However, the number of steps executed is fixed: Since

there is always exactly one execution of the loop body,

each execution of the algorithm would include an execution

of exactly six numbered steps.
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Randomized Algorithms

• Now consider a more general — and somewhat more

complicated — case: The sets

SA = {j ∈ N | 0 ≤ j ≤ n − 1 and A[j] = true}

and

FA = {j ∈ N | 0 ≤ j ≤ n − 1 and A[j] = false}

are both non-empty. Let k = |SA|, so that 1 ≤ k ≤ n − 1

and |FA| = n − k .

• Now neither the output, nor the number of steps used is

fixed — even though the input is.
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Randomized Algorithms

Consider, now, the experiment of executing the rSearch
algorithm on an input including the array A as described above.

• The sample space would include enough information,

about the random choices made, so that the execution of

the algorithm could be studied.

• In particular, the sample space could be set to be

Ω = Ω0 ∪Ω1 ∪ · · · ∪ Ωn−1 ∪ Ωn

where Ω0,Ω1, . . . ,Ωn−1,Ωn are as follows.
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Randomized Algorithms

Ω0 includes executions such that an index j , such that A[j] is

true, is found immediately.

• This would include each sequence 〈j1〉 of values, with

length one, where j1 ∈ SA — so that |Ω0| = |SA| = k .

• Each outcome in Ω0 would have probability 1
n , so that (for

the probability distribution P : Ω → R now being defined)

P(Ω0) =
k
n .

• For each outcome µ ∈ Ω0, the number of steps used in the

execution of the algorithm, when the random values used

are given by µ, is 6 — so that T (µ) = 6, when T : Ω → N is

the number of steps used.
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Randomized Algorithms

For 1 ≤ i ≤ n − 1, Ωi includes executions such that an index j is

found, such that A[j] is true, during the i + 1st execution of the

body of the loop.

• This would include each sequence

〈j1, j2, . . . , ji+1〉

with length i + 1, where j1, j2, . . . , ji ∈ FA and ji+1 ∈ SA — so

that |Ωi | = |FA|
k · |SA| = (n − k)i · k .
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Randomized Algorithms

• Each outcome in Ωi would have probability n−(i+1), so that

(for the probability distribution being defined),

P(Ωi) =
(

1 − k
n

)i
· k

n
.

• For each outcome µ ∈ Ωi , the number of steps used during

the corresponding execution of the algorithm would be

T (µ) = 4i + 6.
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Randomized Algorithms

Ωn includes executions where no index j , such that

A[j] = j = true, is ever found at all.

• This would include each sequence

〈j1, j2, . . . , jn〉

with length n such that j1, j2, . . . , jn ∈ FA — so that

|Ωn| = |FA|
n = (n − k)n.
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Randomized Algorithms

• Each outcome in Ωn would have probability n−n, so that

(for the probability distribution being defined),

P(Ωn) =
(

1 − k
n

)n
.

• For each outcome µ ∈ Ωn, the number of steps used

during the corresponding execution of the outcome would

be T (µ) = 4n + 3.
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Randomized Algorithms

• With a bit of work, you can verify that a probability

distribution

P : Ω → R

has been defined.

• The number of steps used by the execution of the algorithm

on the input A has been expressed as a random variable

T : Ω → N.



Average-Case Analysis Randomized Algorithms Randomized Algorithms for Decision Problems What Really Happens?

Randomized Algorithms

• The expected value of this random variable can be seen

to be

E[T ] =
∑

µ∈Ω

T (µ) · P(µ)

=

n−1
∑

i=0

P(Ωi) · (4i + 6) + P(Ωn) · (4n + 3)

=

n−1
∑

i=0

(

1 − k
n

)i
· k

n · (4i + 6) +
(

1 − k
n

)n
· (4n + 3).
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Randomized Algorithms

This is certainly complicated,

and not very helpful!

If time permits, the lecture presentation will include a

discussion of how to deal with results like this one.
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Randomized Algorithms

Definition:

• The expected running time of a randomized algorithm’s

execution, on a given input, is the expected value of the

random variable, representing its running time, when

modelled as suggested above (so that the “sample space”

models the random values that are generated as an

execution of the algorithm proceeds).

• The worst-case expected running time of a randomized

algorithm is a function of the size of an input, just as the

“worst-case running time” of a deterministic algorithm is: It

is, essentially, the “maximum” of the expected running

times of the algorithm’s executions on inputs of the given

size.
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Randomized Algorithms

Where You Might See This Kind of Analysis?

• In CPSC 331 a randomized version of a QuickSort
algorithm is also given. The process described here is

used to bound the expected number of steps used by this

algorithm to sort an array of length n. This is then used to

bound the “worst-case expected running time” of this

randomized algorithm.

• This application, from CPSC 331, is a little different than

the above example because the randomized algorithm,

being considered, never gives up.
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Decision Problems

A decision problem is a computational problem that answers a

“Yes-or-No” question — so that the algorithm’s output is always

either true (corresponding to the answer “Yes”) or false
(corresponding to the answer “No”).

Example: Consider another version of “Searching in an Integer

Array”:

• As with the previous “Linear Search” example, the inputs

are an integer array A and an integer key.

• For this problem, we are asking whether the key is stored

in the array — so that the desired output is true if there an

integer i such that 0 ≤ i < A.length and A[i] = key —

and the desired output is false, otherwise.
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Las Vegas Algorithms

A Las Vegas algorithm is a randomized algorithm that can

never return an incorrect answer — so that, when an execution

ends, the output provided (either true or false) is correct.

• The number of steps executed by this algorithm, when it is

run on a given input, is a random variable over a sample

space defined using the “random” choices made during the

algorithms’s executions — just as it is for other randomized

algorithms.
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Example: This is Not a Las Vegas Algorithm

Consider a modified version, rSearch2, of the randomized

algorithm from the previous example — which searches for a

key in an integer array instead of looking for a copy of “true”.

• Rather than checking whether A[i] is true for a sequence

of randomly chosen indices i it checks whether A[i] is equal

to the input key.

• Rather than throwing an NoSuchElementException if the

desired value is not found at the end, the algorithm returns

false.

Pseudocode for this algorithm is on the following slide.
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Example: This is Not a Las Vegas Algorithm

boolean rSearch2 (integer[] A, integer key) {

1. integer n:= A.length

2. integer i := 0

3. while (i < n) {

4. Choose j uniformly from the set {0,1,2, . . . ,n − 1}
— independently from any previous selections.

5. if (A[j] == key) {

6. return true

}

7. i := i+ 1

}

8. return false

}
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Example: This is Not a Las Vegas Algorithm

This is not a Las Vegas algorithm!

• To see why, notice that if the key is stored in the array — at

some position ℓ such that 0 ≤ ℓ ≤ A.length− 1 — but it is

not stored anywhere else, and the value ℓ is never chosen

as the value for j at line 4 when this step is executed, then

the step at line 8 will eventually be reached.

• In this case the incorrect output false will be returned,

when a Las Vegas algorithm would be required to return

the correct output, true, instead.
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Example: This is a Las Vegas Algorithm

Suppose we make one more change to the above algorithm:

• Instead of returning “false” if attempts to locate the key
and the step at line 8 is reached, a minor variant of the

deterministic “Linear Search” algorithm, considered at the

beginning of this lecture (which returns the desired output

— true, or false) is used to solve the problem.

• Then, since the variant of the “Linear Search” algorithm is

correct, the resulting randomized algorithm’s output would

also be correct — so that it would be a Las Vegas

algorithm.

Pseudocode for the resulting algorithm, “rSearch3”, is on the

following slide.



Average-Case Analysis Randomized Algorithms Randomized Algorithms for Decision Problems What Really Happens?

Example: This is a Las Vegas Algorithm

boolean rSearch3 (integer[] A, integer key) {

1. integer n := A.length

2. integer i := 0

3. while (i < n) {

4. Choose j uniformly from the set {0,1,2, . . . ,n − 1}
— independently from any previous selections.

5. if (A[j] == key) {

6. return true

}

7. i := i+ 1

}

8. return dSearch(A, key)

}
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This is a Las Vegas Algorithm

The variant of the “Linear Search” algorithm, called as a

subroutine by the randomized algorithm, is as follows.

integer dSearch (integer[] A, integer key) {

1. integer n := A.length

2. integer i := 0

3. while (i < n) {

4. if (A[i] == key) {

5. return true

}

6. i := i+ 1

}

7. return false

}
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Example: This is a Las Vegas Algorithm

• The analysis of the expected running time of the above

algorithms, on a given input, as well as the worst-case

running times of these algorithms, will be considered in

the lecture presentation.
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Monte Carlo Algorithms

A Monte Carlo algorithm is a randomized algorithm that can,

sometimes, return an incorrect answer — but that does so with

small probability.

• The algorithm only returns true, when executed on a

given input, if this is the correct answer for that input. That

is, if the algorithm is executed on an input where the

answer that should be returned is false, then the

algorithm is guaranteed to return false.

• If the algorithm is executed on an input where the answer

that should be returned is true, then the probably that the

algorithm does return false is at least 1
2
.

• Another Way to Think about This: This algorithm can

generate false negatives but it only does so with small

probability — and it cannot return false positives, at all.
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Monte Carlo Algorithms

Consider the randomized algorithm rSearch2, which was given

above as an example of a randomized algorithm that is not a

Las Vegas algorithm.

• As noted above, this algorithm only returns true when the

input key is stored in the input array A — so that there are

no false positives.

• As shown in a supplemental document for this lecture it

can be established that if the input key is stored in the

input array A — so that true should be returned — then

the probability that false is returned instead (so that there

has been a false positive) is less than 1
2 .

• This is, therefore, an example of a Monte Carlo algorithm.
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Two-Sided Error

• While they are not discussed as often, randomized

algorithms that allow false positives with small probability,

but never allow false negatives, are sometimes of interest.

• Randomized algorithms that allow both “false positives”

and “false negatives” are of interest too — but only if the

likelihood of a mistake is significantly reduced!

• In particular, randomized algorithms that allow both false

negatives and false positives but where the probability of

an incorrect result is never more than 1
4
, for any input, are

also of some interest.

• This will be considered, further, in the tutorial exercise for

this topic.
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What Really Happens?

As repeatedly stated: The results obtained, using probability

theory, are only relevant if the assumptions being made —

which are used to define probability distributions — are

satisfied.

• The results are “technically correct” but irrelevant,

otherwise.

• Thus the results of average-case analyses of deterministic

algorithms might not be relevant, because the distribution

of inputs might be different than assumed.

• Results concerning randomized algorithms are even more

problematic because modern programming languages,

in widespread use, do not really provide random

number generators!
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What Really Happens?

• Instead, these use deterministic processes that might

take a small amount of information (like the time of day,

machine load, or a user-supplied value) as a “seed” and

use this to produce a sequence of values whose properties

“approximate” those of a sequence of randomly generated

values, in some sense.

• Results observed in practice typically agree with the

results that analyses supplied using probability theory,

assuming the use of truly “random” sequences.

• A further discussion of this is beyond the scope of this

course — but students who are interested in this can

investigate pseudorandom number generators if they

wish to learn more.
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